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Abstract
A large number of memory corruption vulnerabilities, e.g.,
heap overflow and use after free (UAF), could only be ex-
ploited in specific heap layouts via techniques like heap feng
shui. To pave the way for automated exploit generation (AEG),
automated heap layout manipulation is demanded.

In this paper, we present a novel solution MAZE to manip-
ulate proof-of-concept (POC) samples’ heap layouts. It first
identifies heap layout primitives (i.e., input fragments or code
snippets) available for users to manipulate the heap. Then,
it applies a novel Dig & Fill algorithm, which models the
problem as a Linear Diophantine Equation and solves it de-
terministically, to infer a primitive operation sequence that is
able to generate target heap layout.

We implemented a prototype of MAZE based on the analy-
sis engine S2E, and evaluated it on the PHP, Python and Perl
interpreters and a set of CTF (capture the flag) programs, as
well as a large micro-benchmark. Results showed that MAZE
could generate expected heap layouts for over 90% of them.

1 Introduction
Automated exploit generation (AEG) is playing an impor-

tant role in software security. Software vendors could utilize it
to quickly evaluate the severity of security vulnerabilities and
allocate appropriate resources to fix critical ones. Defenders
could learn from synthetic exploits to generate IDS (Intrusion
Detection System) rules and block potential attacks.

Existing AEG solutions [1, 2, 3, 4, 5] are effective at ex-
ploiting stack-based or format string vulnerabilities, which
are rare in modern systems [6]. Few could handle heap-based
vulnerabilities, which are more common. Heap-based vul-
nerabilities in general can only be exploited in specific heap
layouts. For instance, a common way to exploit a heap over-
flow is placing another object with sensitive code pointers (e.g.
VTable or function pointer) after the overflow object. How-
ever, heap objects’ lifetime and heap layouts are dynamic and
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hard to determine or manipulate. In practice, it requires abun-
dant human efforts and techniques, e.g., heap feng shui [7].

To manipulate heap layouts, in general we have to find
primitives that are able to interact with heap allocators first,
and then assemble them in a specific way by (de)allocating
objects of specific sizes in a specific order.

1.1 Recognize Heap Layout Primitives
A heap layout operation primitive is a building block for

heap layout manipulation, which can be (re)used by users
to interact with target programs’ underlying heap allocators.
Programs usually do not expose such primitives directly.

SHRIKE [8] and Gollum [9] focus on generating exploits
for language interpreters (e.g., Python and PHP), and mark
statements in input scripts (a group of input bytes) as heap
layout manipulation primitives. SLAKE [10] generates ex-
ploits for Linux kernels, and marks system calls as heap lay-
out manipulation primitives. These primitives trigger heap
(de)allocation operations and can be assembled freely. But
they are not applicable to most other applications. For in-
stance, file processing applications neither accept freely as-
sembled input files nor provide APIs for users to invoke.

Furthermore, to precisely manipulate heap layouts, we also
need to understand (1) the semantics of primitives, e.g., the
count and size of (de)allocations performed in each primitive;
and (2) the dependencies between primitives, e.g., the order
between them. Failing to do so would cause further primitives
assembly process ineffective, as shown in SHRIKE [8].

Our solution: Note that, most applications are driven by a
certain form of events, including messages, user interactions,
data fragments, and network connections etc.. Code snippets
dispatched in the event processing loops usually are reentrant
and could be utilized to manipulate heap layouts. We therefore
extend primitives to such reentrant code snippets, and use
static analysis to recognize them, and analyze their semantics
and dependencies accordingly.

1.2 Assemble Heap Layout Primitives
To generate expected layouts, we further need to assemble

the set of recognized heap layout primitives in a specific way.
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SHRIKE [8] applies a random search algorithm, which
is inefficient and undecidable, to find primitive sequences
that could place two specific objects next to each other. Gol-
lum [9] further improves the efficiency with an evolutionary
algorithm. SLAKE [10] utilizes the characteristics of kernel
heap allocators, and proposes a customized algorithm to place
victim objects after vulnerable objects.

However, they fail to address several challenges. First, in-
stead of relative offsets between two objects, the expected
heap layout could be too complicated to model. For instance,
to perform an unsafe unlink attack [11], two chunks are
needed to allocate before and after the overflowed chunk, and
therefore offsets between three objects are required. Second,
each heap operation primitive may allocate and deallocate
multiple objects at the same time, and even interfere with other
primitives. Therefore, primitives may have side effects (i.e.,
noises), and make it challenging to assemble. For instance,
the success rate of SHRIKE [8] drops dramatically when the
number of noises grows. Lastly, different heap allocators have
different heap management algorithms, causing different heap
layouts even with the same sequence of heap operation prim-
itives. Therefore, allocator-specific solutions (e.g., SLAKE)
cannot be simply extended to other applications.

Our solution: We reduce the heap layout manipulation
problem to a basic problem of placing a specific object O at
a specific position P, and propose a Dig & Fill algorithm.
At the time of allocating O, if the location P is occupied by
other objects, then we will dig proper holes in advance to
accommodate them. Otherwise, if P is empty but O still falls
into other holes, then we will fill those holes in advance.

Each heap layout operation primitive may yield a num-
ber of dig and fill operations. Thus, we setup a Linear
Diophantine Equation [12], to calculate the count of each
primitive required. By solving this equation deterministically,
we infer the heap interaction primitive sequence that could
generate the target layout.

1.3 Results
In this paper, we presented an automated heap layout ma-

nipulation solution MAZE to address the aforementioned chal-
lenges. We built a prototype based on the binary analysis
engine S2E [13], and evaluated it in three different settings:
(1) 23 vulnerable CTF (Capture The Flag) programs, (2) the
PHP interpreter with 5 known vulnerabilities, targeting 10
different heap layouts respectively, as well as the Python and
Perl interpreter with 10 vulnerabilities, and (3) 3000 randomly
generated test cases with large primitive noises.

Results showed that, MAZE has a high success rate and
efficiency. It successfully converted 16 CTF programs’ heap
layouts into exploitable states, efficiently generated expected
heap layouts for the PHP, Python and Perl in all cases, and
generated expected heap layouts for the random test cases
with a success rate of over 90%.

In summary, we have made the following contributions:

• We proposed a novel automated heap layout manipulation
solution MAZE, able to generate complicated heap layouts
(e.g., with multi-object constraints) for a wide range of
heap allocators, facilitating automated exploit generation.

• We proposed a new and general type of heap layout opera-
tion primitives, and proposed a solution to recognize and
analyze such primitives.

• We proposed a novel Dig & Fill algorithm to assemble
primitives to generate expected heap layouts, by solving a
Linear Diophantine Equation deterministically.

• We pointed out primitive noise is not the primary bottle-
neck of automated heap feng shui, and made MAZE robust
against primitive noises.

• We implemented a prototype of MAZE 1, and demonstrated
its effectiveness in CTF programs, language interpreters,
and synthetic benchmarks.

2 Background
2.1 Automated Exploit Generation (AEG)

AEG for Stack-based Vulnerabilities: Early AEG solu-
tions rely on deterministic recipes, e.g., the classical methods
to exploit stack-based or format string vulnerabilities, to au-
tomatically generate exploits. Heelan et al.[1] proposed to
utilize dynamic taint analysis to generate control-flow-hijack
exploits when given crashing POC inputs. Avgerinos et al.
coined the term AEG [2] and developed an end-to-end system
to discover vulnerabilities and exploit them with symbolic
execution. They further extended the solution to support bi-
nary programs in Mayhem [3]. Similarly, starting from the
crashing point, CRAX [5] symbolically executes the program
to find exploitable states and generate exploits.

AEG for Heap-based Vulnerabilities: Unlike stack-
based vulnerabilities, heap-based vulnerabilities in general are
harder to exploit. Repel et al. [14] utilizes symbolic execution
to find exploit primitives that are derived from heap chunk
metadata corruption, and then tried to generate exploits using
a SMT solver. Revery [15] utilizes a layout-oriented fuzzing
and a control-flow stitching solution to explore exploitable
states when given a non-crashing POC. HeapHopper [16] uti-
lizes symbolic execution to discover exploitation techniques
for heap allocators in a driver program. PrimGen [17] utilizes
symbolic execution to find a path from the crashing point to a
potentially useful exploit primitive. Most of these solutions
can not manipulate heap layouts, and only work when the
given POC sample’s heap layout is good to go.

AEG for Various Targets: FUZE [18] utilizes fuzzing to
find different dereference sites of dangling pointers in system
calls, and facilitates the process of kernel UAF exploitation.
Kepler [19] facilitates kernel exploit generation by automat-
ically generating a “single-shot” exploitation chain. The so-
lution teEther [20] extends AEG to vulnerabilities in smart

1We open source MAZE at https://github.com/Dirac5ea/Maze to facili-
tate the research in this area.
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1  void main(void){
2    while(1){ switch(c){           //IXQFWLRQ�GLVSDWFKHU
3    case 1: Create_Router();    ��SULPLWLYH��
4    case 2: Create_Switch();    ��SULPLWLYH��
5   case 3: Delete_Switch();    ��SULPLWLYH��
6    case 4: Edit_name(); }      ���������������� }}
7  Router Create_Router(){...
8    Router *router   = malloc(0x160);
9    router->protocol = malloc(0x160);
10    router->r_table  = malloc(0x160); ...}
11 Switch Create_Switch(){...
12    Switch *switch   = malloc(0x160);
13    switch->name     = malloc(0x160); 
14    glist[count++]   = switch;       ...}
15 void Delete_Switch(int index){...
16    if (glist[index]!=Null) {..
17    free(glist[index]);
18    free(glist[index]->name); }..    ...}
19 void Edit_name(int index){...
20    Switch *s  = glist[index];               
21    read(0, s->name, 0x60)           ...} (before)
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Figure 1: Example vulnerability and the heap layout manipulation solution. Hexagons with dashed edges are primitives to insert.

contracts. FLOWSTITCH [21] aims to generate data-oriented
exploits, which could reach information disclosure without
breaking the control flow. Ispoglou et al. [22] proposed the
BOP, which could utilize basic blocks as gadgets along valid
execution paths to generate data-oriented exploits.

2.2 Automated Heap Layout Manipulation
Heap layout manipulation is a critical challenge of AEG,

recognized as the heap likelihood inference issue in [23, 24].
Several solutions have been proposed in recent two years.

SHRIKE [8] randomly assembles program input fragments
(script statements) to search for inputs that could generate ex-
pected layouts. Gollum [9] applies an evolutionary algorithm
to improve efficiency. However, many applications’ input
fragments cannot be freely assembled together to yield valid
inputs. Besides, different primitives (input fragments) could
have dependencies and side effects (noises), greatly lowering
the success rate and efficiency of SHRIKE and Gollum.

SLAKE [10] is another solution able to manipulate heap
layouts. It targets only Linux kernel vulnerabilities, and ap-
plies an algorithm specific to the simple and deterministic
Linux slab allocator to assemble system calls. However, it has
a narrow application scope. Most applications neither have
direct interaction interfaces like system calls, nor have simple
heap allocators. It also suffers from the primitive noise issue.

2.3 Problem Scope
2.3.1 Applicable Programs

Our solution MAZE is only applicable to event loop driven
programs. Most programs are driven by user input events or
messages, and usually have function dispatchers enclosed in
loops to handle these events. For example, network interaction
programs are driven by commands in connections, language
interpreters are driven by sentences in scripts.

2.3.2 Applicable Heap Allocators
Our solution MAZE can be applied to multiple allocators

as long as they obey four rules as below:
Rule 1: Deterministic Behavior. A same sequence of

heap operations will yield a same heap layout, if a same ini-
tial heap layout is provided. The majority of allocators are
deterministic, such as ptmalloc[25] and dlmalloc[26]. Some

allocators are deterministic under some conditions, such as
jemalloc[27] in single thread environment.

Note that, the allocator can have non-deterministic initial
state. MAZE will utilize heap spraying [28] to fill all holes in
the initial state and reach a deterministic state. After that, new
chunks could be (de)allocated as if they are in an empty heap.

Rule 2: Freed memory areas first. Allocators reuse one
of the recently freed areas to serve the allocation request,
rather than finding a new area from inventory. This strategy
can improve memory utilization efficiency and is adopted by
most allocators, such as ptmalloc, dlmalloc and jemalloc.

Rule 3: Freed areas of same size first. Allocators prefer
to choosing the freed areas of same size to serve the alloca-
tion request. This strategy is usually used to reduce memory
fragments and widely adopted.

Rule 4: Re-allocation order is deterministic. Freed
memory chunks are usually kept in linked lists, and re-
allocated to new objects in certain order. Some allocators
use the lastly freed chunk to serve the new allocation request,
i.e., following the LIFO (Last-In-First-Out) policy, e.g. fastbin
in ptmalloc[25], while some others follow the FIFO (First-In-
First-Out) policy, e.g. normal chunk in ptmalloc[25].

3 Motivation Example
We will introduce the overview of our heap layout manip-

ulation solution MAZE, with a running example shown in
Figure 1. There is a UAF vulnerability, where the Switch
object is freed at line 17 but its pointer is kept in the global
list and referenced again at line 21.

3.1 Expected Memory Layout Generation
First, we need to analyze the vulnerability in POC automat-

ically, there are many sanitizers [15, 29, 30, 31, 32] proposed
for this purpose. As mentioned in Revery[15], dynamic anal-
ysis can be used to identify the vulnerability point and excep-
tional object. In this example, we can know the vulnerability
is a UAF and the Switch object is the exceptional object.

Then, the expected memory layout can be generated ac-
cording to the properties of the vulnerability. In this example,
a controllable object (e.g. switch->name) should take the
freed exceptional object’s position, to hijack the reference
of the freed object s at line 21, and drive it to write to an
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Figure 2: Overview of Maze

address s->name controlled by the attacker, yielding arbitrary
memory writes. For other types of vulnerabilities, e.g. the
buffer overflow, an exploitable object should be placed next to
the overflowed object. Using existing solutions, the expected
exploitable memory layout can be generated. And it will be
an input for MAZE.

3.2 Memory Layout Manipulation
This part is the main focus of MAZE. Given the expected

layout (i.e., placing a switch->name at the freed switch ob-
ject’s position), simply invoking Create_Switch may yield
another uncontrollable switch object at the target location,
unable to control the memory write pointer (i.e. POC in Fig-
ure 1). Instead, the adversary could manipulate the heap layout
in another way to place a controllable switch->name at the
target position. MAZE aims at finding such a manipulation
scheme automatically. Figure 2 shows the overview of MAZE,
which consists of two major components discussed as follows.

3.2.1 Heap Layout Primitives Analysis
In this part, taking the program and POC as inputs, MAZE

will extract primitives in them. Heap layout primitives (e.g.,
Create_Switch) are the building blocks for heap layout ma-
nipulation. Different from existing solutions, we extend heap
layout primitives to reentrant code snippets.

Primitives Extraction: Reentrant code snippets usually ex-
ist in function dispatchers that are enclosed in loops. There-
fore, we could utilize the code structure characteristic to rec-
ognize candidate heap layout primitives, via static analysis.

Primitives Dependency Analysis: Some reentrant code snip-
pets may depend on other snippets. For instance, a snippet
responsible for freeing an object has to wait for another snip-
pet to create the object first. By analyzing the pre-condition
and post-condition of each code snippet, we could recognize
such dependencies and merge them into one primitive.

Primitives Semantics Analysis: To better assemble primi-
tives, we have to understand the semantics of each primitive,
especially the size of objects (de)allocated in each primitive
using taint analysis and symbolic execution.

Example: In this example, given the program, by analyz-
ing its code structure, we could recognize several primitives
at line 3, 4 and 5. Further, we could infer that primitive
Delete_Switch depends on the primitive Create_Switch,
and therefore group them as a new primitive.

Given the POC, MAZE also extracts the heap primitives
used in POC’s execution trace (i.e. POC info in Figure 2), to
infer the original memory layout and the inserting points.

3.2.2 Heap Layout Primitives Assembly
The inputs of this part are heap primitives, POC info, path

constraints and expected layout. MAZE will utilize heap prim-
itives to manipulate POC’s layout (infered from the POC
info) to the expected layout and generate an exploit using a
constraint solver.

Intuition: The problem of generating an expected heap
layout could be modelled as placing a group of objects in a
group of memory addresses. Without loss of generality, we
will first consider placing one object O into one target address
P. As shown in Figure 3, there are two cases to handle.

Dig case: As shown in Figure 3(a), at the time of allocating
the target object O, the target address P could be taken by
noise objects (e.g., O’). In this case, we will dig (multiple)
holes before allocating noise objects O’, by adding primitives
that could free objects of proper sizes, to accommodate noise
objects O’ and leave the hole P to the target object O.

Fill case: As shown in Figure 3(b), at the time of allocating
the target object O, the target address P could be empty, but O
still falls into other holes. In this case, we will fill (multiple)
holes before allocating O, by adding primitives that could
allocate objects, and leave the hole P to the target object O.

Following this Dig & Fill guidance, we could add proper
heap layout primitives into the program execution trace to
yield expected layouts.

Standard fill (or dig) operation If a fill (or dig) operation
contains only one allocation (or deallocation), and the size
equals to the size of O (or P), we call it a standard fill (or dig)
operation. Obviously, a standard fill (or dig) operation can fill
(or dig) only one hole with the same size of O (or P).

Memory

free

alloc

Target 
hole

noise
alloc

holes
to dig

Memory

free

alloc

Target 
hole

noise
free2

holes
to fill

(a)  Dig operation (b)  Fill operation
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Figure 3: Intuition of the Dig & Fill algorithm. Hexagons
are heap layout primitives to invoke. Only one of free1 and
free2 exists (before or after the creator of the target hole), de-
pending on the heap allocator’s strategy (i.e., FIFO or LIFO).
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Target Distance Analysis As long as we add enough stan-
dard fill (or dig) operations into the program execution trace,
the target object O can be placed into the target address P.

To analyse how many standard fill (or dig) operations are
needed, we craft a shadow program with the same heap alloca-
tor, which only handles (de)allocations and takes commands
from the analyzer. According to the heap primitives in POC’s
execution trace (i.e. the POC info), the analyzer will instruct
the shadow program to free or allocate objects of specific
sizes. Therefore it will derive the original memory layout and
determine whether dig or fill operation is required. Then the
analyzer will keep inserting standard fill or dig operations
until the target object O is placed into the target address P. If d
standard dig operations are required, the Target Distance
is set to +d. Otherwise, if d standard fill operations are re-
quired, the Target Distance is set to -d.

In this example, one standard dig operation is needed (i.e.,
one hole should be dug) so that Create_Switch can place
switch->name at the target position. In other words, the
Target Distance of original layout of POC is +1.

Delta Distance Analysis Heap layout primitives are usu-
ally not standard. And we evaluate how many standard dig or
fill operations a primitive is equivalent to. We also utilize the
shadow program to evaluate the Target Distance. Assum-
ing the Target Distance before and after inserting a primi-
tive are d1 and d2 respectively, then the Delta Distance of
this primitive is d2-d1.

In this example, the Delta Distance of primitives
Create_Switch, Create_Router and Delete_Switch
(combining with its dependant Create_Switch) are +2, +3 and
-2 respectively.

Linear Diophantine Equation Generation Given the
Target Distance to reduce and the Delta Distance of
each primitive, we could set up a Linear Diophantine
Equation [12] to calculate the count of each primitive re-
quired to reduce the Target Distance to zero (i.e., satisfy-
ing the expected layout constraint).

In this example, assuming the count of these primitives are
x1, x2, x3, we could build a Linear Diophantine Equation
as follows: {

2x1 +3x2−2x3 +1 = 0
x1,x2,x3 ≥ 0

By querying solvers like Z3[33], we could get a solu-
tion: (x1 = 0,x2 = 1,x3 = 2). Therefore, we will add one
Create_Router and two Delete_Switch primitives to the
program execution trace. Lastly, we could get the heap layout
operation primitive sequence as shown in Figure 1.

Exploit Generation By inserting the inferred primitive se-
quence to the original program trace, MAZE can generate a
program trace that could yield an expected heap layout. As a
result, we can utilize techniques like symbolic execution and

constraint solving to generate exploit samples. And this is the
final output of MAZE.

3.3 Full Chain Exploit Composition
Given the exploitable memory layout generated by MAZE,

several other challenges need to be addressed in order to
generate a full chain exploit. For instance, defenses like ASLR
do not hinder MAZE from manipulating heap layout but could
block it from generating working exploits. So we need to
find a solution to bypass such deployed security mechanisms.
These challenges are out of the scope of MAZE.

4 Heap Layout Primitives Analysis
Heap layout primitives are the building blocks for heap

layout manipulation. However, applications usually do not
expose interfaces for users to directly interact with the un-
derlying heap allocators. Existing solutions utilize repeatable
input fragments and reentrant system calls as primitives to
manipulate the heap layout, having limited application scope.

Note that, most applications are driven by different forms of
events (e.g., messages, commands, connections), and usually
have loops to dispatch event handlers (code snippets). These
handlers are reentrant and could be utilized as primitives to
interact with underlying heap allocators. We therefore extend
heap layout primitives to such reentrant code snippets.

4.1 Primitives Extraction
Since primitives are reentrant code snippets in function

dispatchers enclosed in loops, we could analyze the code
structure (i.e., control flow graph) to recognize primitives.

In practice, the loop body of a function dispatcher is a
switch statement or a group of nested if-else branch statements
with related conditions. Each one of such switch cases or
branches usually represents a reentrant event handler.

Following the algorithm [34], we could first identify can-
didate loops in target applications. Then, we could recover
potential switch statements and nested if-else statements in
candidate loops, following [35, 36]. Lastly, we mark switch
cases or if-else branches that have memory (de)allocation
operations as candidate reentrant code snippets.

If the count of candidate snippets in a loop exceeds a thresh-
old, then this loop is a candidate function dispatcher and the
reentrant code snippets are marked as candidate primitives.
The threshold should be more than one, in order to distinguish
from simple loops, e.g., a loop for memory write or reads. In
our experiment, we take a heuristic value 5 as the threshold.
If the program is complicated and have many candidate loops,
we can increase the threshold to reduce candidate primitives.

Primitives Extraction for Interpreters. MAZE also sup-
ports extracting primitives for language interpreters, e.g., PHP
and Python. Similar to previous solutions, MAZE utilizes a
fuzzer to generate test cases, and extracts each sentence in
scripts as a potential heap layout primitive.
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4.2 Primitive Semantics Analysis
The semantics of each primitive, e.g., the size of heap

(de)allocation, is critical for precise heap layout manipulation.
Therefore, we need to analyze primitive semantics first.

Path Symbolization: Note that, a primitive is a code snip-
pet, which could also have internal branches and form may
paths. It is infeasible to analyze all paths to compose the
semantics of a primitive. Fortunately, we only care about
heap (de)allocations, and many basic blocks do not have such
operations. We therefore propose a novel technique path sym-
bolization to merge paths with similar heap operations.

First, we remove exception handling paths, since they can-
not serve as heap layout operation primitives. Second, for
two basic blocks in a primitive, if all sub-paths between them
have no heap operations, we will merge all these sub-paths
together as a symbolic sub-path and mark their basic blocks
as symbolic. Therefore, all paths of a primitive could be dras-
tically reduced to several symbolized paths, each consists of
a sequence of non-symbolic blocks and symbolic sub-paths.

Symbolic Execution: For each symbolized path, we will
evaluate its semantics with symbolic execution. We first uti-
lize symbolic execution to find a path from the program start-
ing point to the entry of this path, then iterate basic blocks in
this path as follows. When a symbolic block is iterated, we
will perform path traversal for the corresponding symbolic
sub-path, and aggregate the symbolic execution results. When
a non-symbolic blocks is iterated, symbolic execution is per-
formed as normal. An aggregated symbolic execution result
will be yielded for each symbolized path.

Note that, loops will cause path explosion issue for sym-
bolic execution as well. We mitigate this issue by unfolding
loops up to a limited number, e.g., a heuristic value 4.

Heap Allocation Size Inferrence After performing sym-
bolic execution, we could get the primitive’s allocation size. If
the size is symbolic, then we utilize the Satisfiability Modulo
Theories (SMT) solver Z3 [33] to derive its value range.

Note that, a primitive with variable heap allocation sizes
can be used as a set of different primitives. For instance, if
we could allocate objects of size 0x20, 0x40 and 0x60 in a
primitive P with different inputs, then we could get three dif-
ferent primitives P_0x20, P_0x40, and P_0x60, which share
the same code snippet but have different heap effects. They
could be used to satisfy different object layout constraints.

4.3 Primitives Dependency Analysis
Primitives may depend on other primitives. For instance, a

file read operation has to take place after a file open operation.
Therefore, we have to analyze such dependencies and group
primitives with dependencies together.

Pairing Allocation and Deallocation: Given an object, it
is useful to recognize when it is allocated and freed. We ap-
plied a customized taint analysis to pair heap allocations and
deallocations. More specifically, we assign a unique birthmark

Distance
Measure

Linear Additivity Process 'LRSKDQWLQH�
(TXDWLRQ�6HWXS�

+HDS�/D\RXW�
3ULPLWLYHV

PDOORF

FDOORF

Primitive 
Group

̗GQ

3R&�3DWK

Shifting
c0XOWL�9DULDEOH� 3DWK�

(GLWc7ZR�9DULDEOH�

+DOI�(TXDWLRQ

607
VROYHU

EXP
ŏ

Distance
Correcting

Primitive
GroupingIUHH

ŏ

3ULPLWLYH�WLPLQJ

G

Figure 4: Overview of Heap Layout Primitive Assembly

tag to the object at each heap allocation site, and propagate
the tags along program execution. At each heap dealloca-
tion site, we will examine the object’s tag, and link it to the
corresponding heap allocation site.

Recognizing Path Dependency: Some sub-paths of a
primitive may depend on another primitive. As shown in Fig-
ure 1, Delete_Switch relies on the global variable glist,
which is set by another primitive Create_Switch.

Since the primitives exist in a function dispatch, the most
common dependency is maintained by variables (including
global variables) visible to the function dispatcher. We there-
fore examine the branch conditions of each primitive, and
check if it relies on some variables that are modified by other
primitives. If so, the former primitive is likely to depend on
the latter. Further, we will execute the former dependent prim-
itive without the latter primitive, and validate whether it will
crash. If yes, we can confirm that the dependent primitive
relies on the latter primitive.

5 Heap Layout Primitive Assembly
Given the set of recognized heap layout manipulation prim-

itives, the next step is assembling them in a specific way and
adding them to the original program path taken by the POC
sample, to generate the expected heap layout.

5.1 Overview
Figure 4 shows the workflow of our solution. At the core,

a Dig & Fill algorithm (§5.2) is applied to manipulate the
heap layout. To determine how many dig and fill primitives
are needed, we will measure (§5.3) Target Distance of the
expected layout and Delta Distance of each primitive, and
setup a Linear Diophantine Equation (§5.4) accordingly,
then solve it deterministically to resolve the count of each
primitive. In some cases, we cannot simply add the distances
of two primitives together. Therefore, we will pre-process
primitives to guarantee their linear additivity (§5.4.2).

Given the count of each primitive, we will add them to the
original POC path in an order guided by the primitive timing
principle (§5.5), and yield a new path that is likely to have
expected layout. For language interpreters (e.g., PHP), MAZE
inserts primitives (e.g., sentences) to the original POC, and
adjusts variable names in sentences based on the dependency.

Lastly, we will utilize symbolic execution to generate path
constraints of the new path and collect data constraints of
primitives (e.g., allocation size), and then query the SMT
solver Z3 [33] to generate exploit samples when possible.
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For simplicity, we will start from discussing one object lay-
out constraint, and extend it to multi-object layout constraints
later (§5.6). Moreover, we will discuss the factors that affect
the success rate of heap layout manipulation in §5.7.

5.2 Dig & Fill Algorithm
As explained in Section 3.2.2, we will manipulate the heap

layout following a Dig & Fill algorithm. At a high level,
there are three cases:
• Win: At the time of allocating the target object O, it could

be placed exactly in the target hole P.
• Dig: At the time of allocating O, P is occupied by other

objects. In this case, we will dig some holes, by invoking
proper primitives, before allocating the occupying objects.
As a result, the occupying objects will fall into the holes
we prepare, then leave the target hole P to object O.

• Fill: At the time of allocating O, P is empty, but O still
falls into other holes. In this case, we will fill those trap
holes, by invoking proper primitives, before allocating O,
and drive it to take the target hole P.
Therefore, placing a target object at a target hole can be

simplified as digging or filling multiple memory holes. On the
other hand, each heap layout primitive could be modelled as
a combination of multiple dig operations and fill operations.
So, to generate the expected layout, we just need to figure out
the number of each primitive required and their order.

5.3 Distance Measurement
To figure out how many holes have to be dug or filled, we

will evaluate the Target Distance of the target object to the
target hole. On the other hand, we will evaluate how many
holes could be dug or filled by each primitive by evaluating
its Delta Distance.

5.3.1 Heap Layout Simulation and Monitoring
Note that, heap allocators are too complicated to model

offline (e.g., via symbolic execution). The sizes of allocations
and deallocations in POC execution trace and heap prim-
itives are usually different. And the splitting and merging
mechanisms make it almost impossible to derive the distance
statically.

Instead, MAZE regards the allocator as a black box and
uses a shadow program to simulate the heap layout. The
simple shadow program has the same heap allocator as the
target application, and only performs heap operations, such
as malloc 0x20 and free [obj_id]. The MAZE analyzer
will instruct the shadow program to simulate a sequence of
heap operations, and then scan the shadow program’s heap
layout to infer the target application’s.

5.3.2 Target Distance Measurement
To evaluate the Target Distance, the analyzer will in-

struct the shadow program to perform standard fill (or dig)
operations. Specifically, the shadow program will solely al-
locate (i.e., fill) or allocate then deallocate (i.e., dig) objects

of proper sizes (equal to the size of O and P respectively), i.e.,
only fill (or dig) holes with the same size of O (or P).

If d standard dig operations are needed, then the Target
Distance is +d. Otherwise, if d standard fill operations are
needed, the distance is -d. In other words, Target Distance
means how many standard dig or fill operations are needed to
create the expected memory layout.

5.3.3 Delta Distance Measurement
To measure the Delta Distance of a primitive, we will

evaluate the Target Distance before and after invoking this
primitive.

To simplify the evaluation, we will set the Target
Distance to 0 before invoking primitives, i.e., the target ob-
ject falls to the target hole in the shadow program. Then we
perform the same heap operations as the primitive in the
shadow program, and calculate the new Target Distance,
and denote it as the Delta Distance of this primitive. If the
Delta Distance is -d or +d, the primitive is therefore called
dig or fill primitive.

It should be noted that a primitive is usually not a standard
fill (or dig) operation, e.g. it may contain multiple allocations
(i.e. noises) or the size of heap operations are not equal to O
(or P). So Delta Distance means how many standard dig or
fill operations the primitive is equivalent to. For example if the
Delta Distance is -n, it means the primitive can be equiva-
lent to n standard dig operations. But the primitve may either
dig n standard holes, or dig one hole which is big enough to
places n objects.

5.4 Linear Diophantine Equation Setup
Given the Delta Distance of each primitive ∆d1, ∆d2,

∆d3...∆dn, we will first calculate the count of each primitive x1,
x2, x3...xn, in order to reduce the Target Distance from d to
zero. Therefore, we could generate a Linear Diophantine
Equation as follows.{

∆d1x1 +∆d2x2 +∆d3x3 + ...+∆dnxn +d = 0
x1,x2,x3...xn ≥ 0 (1)

5.4.1 Existence of Solutions
Note that, if there are no dig or fill primitives, only a small

number of heap layouts (i.e., d) could be satisfied. On the
other hand, this case is rare in practice. Therefore, we will
assume there are always at least one dig and one fill primitive.
Following the well-known Bezout’s Lemma, we could then
infer the following theorem. The proof is listed in Appendix A.

Theorem 1. The aforementioned equation has a non-negative
solution (x1, x2, . . . , xn), if and only if (1) the greatest com-
mon divisor gcd(∆d1, ∆d2, ...∆dn) divides d, and (2) there are
at least one positive and one negative integer in (∆d1, ∆d2,
...∆dn), i.e., there are at least one dig and one fill primitive.

USENIX Association 30th USENIX Security Symposium    1653



5.4.2 Linear Additivity of Primitives

Ideally, the Delta Distance of each primitives could be
linearly accumulated. However, it may be not true in practice,
causing the Linear Diophantine Equation nonsense.

Instead of analyzing the allocations and deallocations in
a primitive, MAZE only calculates how many standard dig
or fill operations the primitive is equivalent to. But the sizes
of allocations or deallocations in primitives are not always
standard (i.e., not equal to the size of O and P). And due to the
splitting mechanism of allocators, the Delta Distance may
not be linearly accumulated.

After an in-depth analysis, we found three types of heap op-
eration mainly cause the nonlinear additivity. 1) Bad alloc:
its size is not equal to the target allocation O’s. 2) Bad hole:
its size is not equal to the target hole P’s. 3) Little alloc:
its size is less than half of P’s.

For example, if the primitive has a little alloc, P will
be cut into a smaller hole, and O can not be placed at P again,
which means the hole is filled. So the Delta Distance is
measured as +1. But if the primitive is added again, the
little alloc will be placed at the rest part of P, i.e. Delta
Distance is 0. Therefore this primitive does not have lin-
ear additivity. The detailed analysis can be found in Ap-
pendix B. We propose several methods, including grouping,
correcting and shifting, to address this problem.

Take the grouping technique as an example, it is used to
derive primitives which are linearly accumulated with them-
selves. In general, it puts multiple primitives in a group, which
becomes linearly accumulative with itself. If a dig (or fill)
primitive is not self linear accumulated, its Delta Distance
will not be constant. Then MAZE keeps inserting this prim-
itive to a clean memory layout (i.e. Target Distance = 0).
Because memory holes or allocations increase periodically,
the Delta Distance of this primitive will also change pe-
riodically. Then MAZE puts all the primitives in one cycle
together and derives a new primitive, which has linear addi-
tivity. Details could be also found in Appendix B.

Then MAZE further ensures different primitives have linear
additivity. After grouping, MAZE will search for fill primi-
tives that do not contain bad alloc or little alloc. These
fill primitives are linearly accumulated with almost arbitrary
dig primitives. Then MAZE can generate a Multi-variable
Diophantine Equation to derive the expected memory lay-
out. MAZE also searches dig primitives which contain no
bad hole, and the following process is the same. If no such
primitives are available, MAZE will select a pair of fill and dig
primitives, and utilize the grouping technique again. Then
MAZE can generate a Half Diophantine Equation with-
out Target Distance. If the Delta Distance of two prim-
itives are coprime, the Linear Diophantine Equation al-
ways has solutions. Then MAZE will keep inserting the fill
(or dig) primitive to shift the layout state until O is placed at P.
More detail could be found in Appendix C.
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Figure 5: Examples of two-object position constraint.

5.5 Primitive Timing
Given a solution of the Linear Diophantine Equation,

we will add those primitives to the original POC path, to
generate expected heap layout. However, different primitive
placements cause different heap layouts. Therefore, we should
determine where to put these primitives in the POC path.
Assuming the heap layout constraint is placing a target object
O at a target hole P, we will address this problem as follows.

Adding a fill primitive: In this case, as shown in Fig-
ure 3(b), we place the fill primitive (the alloc hexagon) be-
fore the allocation of the target object (the alloc oval), to fill
noise holes and drive the target object towards the target hole.

Adding a dig primitive: As shown in Figure 3(a), a dig
primitive usually consists of an allocation sub-primitive (the
alloc hexagon) and a deallocation sub-primitive (the free1
or free2 hexagon). To avoid the allocation sub-primitive tak-
ing the target hole, we will place it before the target hole
creator (the free oval). Furthermore, we will add extra al-
location primitives around this sub-primitive to isolate the
newly created object, to avoid heap chunk merging when this
new object is freed later. Then, we will place the deallocation
sub-primitive right before the target hole creator if the heap
allocator adopts a FIFO policy, or place it after the target hole
creator if a LIFO policy is adopted, to free the newly created
object (i.e., dig a higher priority hole) to accommodate the
noise allocation and leave the target hole to the target object.

5.6 Multi-Object Layout Constraint
A multi-object heap layout constraint could be reduced to

placing a group of objects to a group of holes. Ideally, we
could decouple the constraints and solve the constraint of
each object individually. However, the dig and fill operations
for one object could influence another object’s placement,
making it infeasible to apply the divide and conquer algorithm.
Existing solutions all fail to address this challenge.

5.6.1 Motivation Example
Figure 5(a) shows an example two-object layout constraint,

where the allocations Malloc 3 and Malloc 4 should take
the positions Hole 1 and Hole 2 respectively. Assume the
heap allocator adopts a FIFO policy here. Figure 5(b)(c)(d)(e)
are four different POC program paths to manipulate. Here,
we will discuss the path in Figure 5(b) first.
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According to the aforementioned primitive timing policy,
dig primitives will be added before the creator of target hole (if
the allocator adopts the FIFO policy). However, dig primitives
instrumented before the creator of Hole 1 will change the
Target Distance of the object created by Malloc 4 to its
target Hole 2, but not the vice versa.

Similarly, fill primitives will be added before the allocation
of target object. However, fill primitives instrumented before
Malloc 3 will change the Target Distance of the object
created by Malloc 4 to its target hole, but not the vice versa.

Then, assume there are only one dig and one fill primitive
in the target application, with Delta Distance ∆ddig and
∆d f ill respectively. Assume the Target Distance of hole 1
and 2 are d1 and d2 respectively. Assume (xa, xb, xc xd) prim-
itives will be instrumented at location (a,b,c,d) respectively.
Then, we could setup a system of Linear Diophantine
Equation as follows.{

∆ddigxa +∆d f illxc +d1 = 0
∆ddig(xa + xb)+∆d f ill(xc + xd)+d2 = 0

5.6.2 Equation for Multi-Object Layout Constraint
In general, for multi-object position constraint heap layout,

we will generate a system of Diophantine equations as below: ∆d1x1 + . . .∆dmxm +∆da1xa1 + ...∆danxan +da = 0
∆d1x1 + . . .∆dmxm +∆db1xb1 + ...∆dbnxbn +db = 0

...

In this system, each equation represents the constraint for one
object, where, dk (k=a, b, ...) are the Target Distance of
each object constraint. xk (k=1, 2, ..., m) are the count of in-
strumented primitives that can change the Target Distance
of multiple objects, thus are shared between multiple Dio-
phantine equations. xak, xbk ... (k=1, 2, ..., n) are the count of
instrumented primitives that only change Target Distance
of one object, thus are not shared between equations.

5.6.3 Equation Decoupling
In some cases, different objects are indeed independent,

and their equations could be decoupled from the system. As
shown in Figure 5(e), after placing the first object Malloc 3 at
Hole 1, we could freely manipulate the object Malloc 4 and
place it to the Hole 2. In other words, they are independent
and their equations can be decoupled.

Decoupling the Diophantine equations will greatly sim-
plify the equations and reduce unknown side effects. We
also proposed several techniques to adjust the order of target
allocations and deallocations in program path, to decouple
equations in the system as many as possible. Details could be
found in the Appendix D.

5.7 Success Factors of Heap Manipulation
Heap layouts can not always be manipulated to the desired

state. Few studies have analyzed the factors that affect the suc-
cess rate of heap layout manipulation. Such studies can guide
heap layout manipulation, not only for automated solutions
but also for security experts.

5.7.1 One-Object Layout Manipulation
As shown in Theorem 1, a one-object layout constraint is

solvable if there are at least one dig and one fill primitives, and
all primitives’ Delta Distance’ greatest common divisor
(gcd) divides the Target Distance of the object. Therefore,
if there are no dig or no fill primitives, the success rate of
heap manipulation is low.

Further, the gcd of all primitives’ Delta Distance is also
a key factor, since it should divide the Target Distance.
Ideally, if the gcd is 1, then this equation is always solvable
(assuming both dig and fill primitives exist).

Note that, if we have more primitives, it is more likely that
their gcd will be smaller and even reach to 1. Therefore, we
could infer that, the diversity of primitives is a key factor of the
success rate. To improve the diversity, MAZE tries to discover
as many primitive as possible, and analyze their semantics in
detail to figure out their heap operation size (since different
sizes yield primitives with different Delta Distance).

Existing techniques, such as SHRIKE, argued that the noise
(i.e., extra heap (de)allocation in primitives) is the factor
affecting the success rate. If the noise is 0, i.e., the Delta
Distance of a primitive is 1, then primitives’ gcd will be 1
and the equation is solvable. This confirms the high success
rate of SHIKE and Gollum when the noise is 0. However, we
pointed out that, noise itself is not the key factor. Primitives
with many noises could still have a high success rate, as long
as their gcd is a proper value (e.g., 1).

5.7.2 Multi-Object Layout Manipulation
As explained in §5.6, a multi-object layout constraint equals

to a system of Diophantine equations. Each equation itself
should be solvable. Therefore, the diversity of primitives is
also an important factor for multi-object layout manipulation.

Moreover, all equations should be solvable together. If a
linear combination of these equations yields an equation with
only dig (or fill) primitives, then this system of equations in
general has no solutions. This case is denoted as equation
entanglement, usually caused by the following two reasons.

Inconsistency between the hole creation order and the ob-
ject allocation order. In the POC path, if two target objects
are allocated in a specific order, but their target holes are
created in an inconsistent order, then in general the layout
constraint has no solutions.

As shown in Figure 5(c), the object Malloc 4 is allocate
before Malloc 3, but its target hole hole 2 is created after
hole 1, this layout cannot be satisfied assuming the under-
lying heap allocator adopts a FIFO policy. The system of
Diophantine equations is as below:{

∆ddigxa +∆d f illxc +∆d f illxd +d1 = 0
∆ddigxa +∆ddigxb +∆d f illxc +d2 = 0

Any solution to the first equation will fix xa, xc and xd , and
transforms the second equation to the following form

∆ddigxb +d
′
= 0
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Since there is no fill primitive in this equation, so it usually has
no positive integer solutions, unless ∆ddig and d

′
has different

signedness and the latter is a multiple of the former.
SHRIKE [8] demonstrated that the order of allocation rela-

tive to the memory corruption direction influenced the success
rate. It is a heuristic speculation, not the real reason.

Lack of instrumentation points. In some cases, two target
holes are created in one primitive, as shown in Figure 5(d).
Then, there is only one instrumentation point available for
dig primitives, no matter what objects they are used for. As a
result, the system of Diophantine equations looks like:{

∆ddigxa +∆d f illxc +d1 = 0
∆ddigxa +∆d f illxc +∆d f illxd +d2 = 0

Any solution to the first equation will fix xa and xc, and trans-
forms the second equation to the following form

∆d f illxd +d
′
= 0,

which does not have positive solutions in many cases.
Similarly, if two target objects are allocated in one primi-

tive, there is only one instrumentation point available for fill
primitives. It also causes trouble for heap layout manipulation.

6 EVALUATION
We implemented a prototype of MAZE based on the binary

analysis engine S2E [13]. It has over 16K lines of code to
extract heap layout primitives and analyze their semantics,
and over 12K lines of code to infer the desirable heap layout
interaction sequence. Then, we evaluated its performance in
a Ubuntu 17.04 system running on a server with 115G RAM
and Intel Xeon (R) CPU E5-2620 @ 2.40GHz*24.

6.1 Result Overview
We evaluated MAZE in the following three different set-

tings. All programs are tested in a regular modern Linux
operating system (Ubuntu 17.04), with the defense DEP [37]
and ASLR [38] enabled.

CTF benchmarks: We evaluated MAZE against 23 vul-
nerable programs collected from 20 CTF competition, most
of them can be found in CTFTIME [39].

Out of 23 programs, MAZE can hijack control flow for 5,
leak arbitrary memory address information for 1, and success-
fully generate an exploitable heap layout for another 10. But
it also failed to manipulate the heap layout for 7 programs.

PHP benchmark: We collected 5 public PHP vulnera-
bilities (CVE-2013-2110, CVE-2015-8865, CVE-2016-5093,
CVE-2016-7126 and CVE-2018-10549) and used their over-
flowed buffers as source objects. And then, we selected 10
data structures with exploitable data fields (e.g., code pointers)
and use them as destination objects. By pairing each source
object with destination object, we could get 50 expected heap
layouts, in which the destination object is placed right after
the source object. This setting is same as Gollum [9].

Table 1: CTF programs successfully processed by MAZE.
Name CTF Vul Type Final State
sword PicoCTF ’18 UAF EIP hijack

hacknote Pwnable.tw UAF EIP hijack
fheap HCTF ’16 UAF EIP hijack
main RHme3 CTF ’17 UAF Memory write
cat ASIS Qual ’18 Double free Memory write

asvdb ASIS Final ’18 Double free Memory leak
note3 ZCTF ’16 Heap bof Unlink attack
stkof HITCON ’14 Heap bof Unlink attack

Secure-Key-
Manager SECCON ’17 Heap bof Unlink attack

RNote2 RCTF ’17 Heap bof Unlink attack
babyheap RCTF ’18 Off-by-one Unlink attack

secret-of-my-
heart Pwnable.tw Off-by-one Unlink attack

Mem0 ASIS Final ’18 Off-by-one Unlink attack
quotes_list FireShell ’19 Off-by-one Unlink attack

freenote 0CTF ’15 Double free Unlink attack
databank Bsides Delhi UAF fastbin attack

Table 2: CTF programs that MAZE failed to exploit.
Name CTF Vul Type Failed Reason
multi-heap TokyoWesterns UAF Multi thread
SimpleGC 34c3 UAF Multi thread
vote N1CTF ’18 UAF Multi thread
Auir CSAW ’17 UAF Path explosion
Secret Note V2 HITCON ’18 Heap bof Path explosion
jmper SECCON ’16 Off-by-one Path explosion
video-player SECCON ’17 UAF Random layout

MAZE can generate all expected layouts in 68 seconds, far
faster than SHRIKE and Gollum. What’s more, MAZE is fully
automated. By comparison, both SHRIKE and Gollum need a
template provided by security experts to guide the heap layout
manipulation process.

Python and Perl benchmark: We evaluated MAZE on
Python and Perl. And MAZE can solve all the 10 vulnerabili-
ties within 2 minutes.

Synthetic benchmarks: To thoroughly evaluate MAZE’s
Dig & Fill algorithm against other solutions, we referred to
the synthetic benchmarks used in SHRIKE [8]. Besides layout
noise, we added more factors to evaluate how they impact the
effectiveness of layout manipulation. We evaluated MAZE
against more than 3000 randomly generated test cases on two
heap allocators: ptmalloc [25] and dlmalloc [26].

We evaluated the influence of noises. The result shows that
if there are more than two primitives, the success rate remains
at more than 95%, regardless of the number of noises.

We also evaluated MAZE against more complicated heap
layout constraints which could even lead to nonlinear addi-
tivity of primitives. The result shows that it only impacts a
proportion of different types of Diophantine equations. And
the success rate remains at more than 90%.

In the end, we also evaluated MAZE against multi-object
heap layout constraint for the heap allocator ptmalloc. The
result shows that the success rate is still more than 95%.

6.2 CTF Benchmark
The details of all CTF programs evaluated by MAZE, are

shown in Table 1 and 2.
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Table 3: Heap layout primitives results on CTF programs.

Program Paths Symbolized
Paths

Independent
Primitives

Dependent
Primitives Time(s)

sword 118 11 5 5 500
hacknote 8 5 3 1 71

fheap 55 5 4 1 370
main 182 8 4 4 398
cat 44 10 4 5 1064

asvdb 7440 10 6 3 1156
note3 198 6 4 2 942
stkof 30 11 1 3 267

babyheap 18 6 3 2 163
secret... 12 4 2 2 186
Mem0 183 11 8 3 1099

Secure... 1332 55 5 3 445
quotes... 98 5 2 3 149
freenote 1068 7 3 4 1643
RNote2 62 6 3 3 359
databank 100 11 9 2 192

6.2.1 Successful Cases
Table 1 shows the list of programs successfully processed

by MAZE. Out of 16 programs, MAZE can hijack control flow
for 5 of them, and leak arbitrary memory address information
for 1 of them. For the other 10 programs, MAZE only outputs
the exploitable heap layout without generating exploits, since
extra exploit techniques (e.g., unlink attack) are required
to generate proper exploits but not supported yet.

6.2.2 Failed Cases
Table 2 shows the CTF programs that MAZE failed to gen-

erate expected layouts for. The major reasons are as follows:
• Multi-Thread: First, it’s very difficult to analyze the de-

pendence between different primitives in multi-thread ap-
plications. Second, race condition vulnerabilities between
threads cause great difficulties to symbolic execution.

• Path Explosion: Although MAZE utilizes Path
Symbolization to prune unnecessary paths and merge
similar paths, complicated programs can still cause path
explosion. For example, Secret Note V2 embeds an
AES algorithm, and auir is obfuscated by ollvm [40].

• Random layout: As discussed in Section 2.3.2, the heap
allocator’s behavior must be deterministic. Otherwise,
MAZE may fail to infer the heap interaction sequence.
For instance, there are random amount memory holes in
video-player program’s layout.

6.2.3 Effectiveness of Primitives Analysis
Table 3 shows the analysis results of heap layout operation

primitives on CTF programs. We can see that, the number of
original program paths is very large. But after applying our
path symbolization technique, 15 of 16 programs’ paths
are reduced to about 10 symbolized paths, as shown in column
3. The average rate of path simplification is 98.4%.

Among these symbolized reentrant paths, MAZE further
analyzes these primitives’ dependency. Some primitives are
independent from others, as shown in column 4. Column 5
shows the number of primitives that depend on others and can
be analyzed by MAZE.

Table 4: Result of primitives assembly on CTF programs.

Program Primitive
Count

Noise
Count

Constraint
Count

D.a.F
Time

POC
Time

Solve
Time

sword 4 0 1 5 26 1109
hacknote 32 1 1 58 14 406

fheap 17 1 1 26 38 3945
main 24 1 1 41 26 1046
cat 3 2 1 30 42 1013

asvdb 3 2 1 6 22 3105
note3 2 0 2 9 29 2600
stkof 4 0 3 19 33 1143

babyheap 9 0 2 14 24 2805
secret... 10 0 3 18 8 7646
Mem0 10 0 2 16 31 4974

Secure... 5 0 2 6 22 1676
quotes... 3 0 2 15 80 946
freenote 6 0 1 12 33 2034
RNote2 8 1 2 14 198 2779
databank 2 0 1 2 21 375

The last column shows the total time interval used for ex-
tracting and analyzing these primitives. MAZE could finish
analyzing all 16 programs in several minutes. The average
time cost is 9.4 minutes (562.7 seconds).

6.2.4 Efficiency of Primitives Assembly
Table 4 shows the evaluation result of the heap layout prim-

itives assembly process. Column 2 shows the total number of
available primitives, different from the number of symbolized
paths listed in Table 3. MAZE will analyze the semantics of
each symbolized path, and remove paths that cannot be used
as primitives. It also analyzes the size of heap operations, and
may yield multiple primitives for one symbolized path (with
different allocation size). As shown in the table, MAZE could
find at least 2 primitives for all 16 programs.

Some primitives may have more than one allocations and
deallocations. The extra noise (de)allocations could cause
trouble for heap layout manipulation, as argued in previous
work, e.g., SHRIKE and Gollum. Column 3 shows the average
number of noises in these primitives.

Column 4 shows the number of heap layout constraints
to satisfy. There are 8 programs with one constraint. All of
them have UAF or double free vulnerabilities, requiring to
place one object at one location. Another 8 programs with two
constraints all have buffer overflow vulnerabilities, requiring
to place the vulnerable objects as well as the victim objects at
proper locations. The other 2 programs requires three object
constraints to facilitate unlink attacks.

The last three columns are the time cost, including the time
used by the Dig & Fill algorithm (distance evaluation and
equation solving), by POC analysis (vulnerability analysis and
instrumentation points analysis), and by constraint solving
(satisfying the final edited path). All steps are relatively fast,
except the last constraint solving step, due to challenges to
symbolic execution (e.g., loops and symbolic addresses).

6.3 PHP Benchmarks
To compare with existing solutions Shrike[8] and

Gollum[9], we chose PHP as a real world target to evalu-
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Table 5: Evaluation results of different solutions on PHP.
Solution Solve time(s) Succ POC analysis time(s)
Maze 100% in 68s 100% 922s
Shrike 25% in 300s, 60% in 3000+s 60% Not Supported
Gollum 75% in 300s, 85% in 2500+s 85% Not Supported

ate. To trigger all the 5 vulnerabilities, we selected version
7.0.4. The evaluation result is shown in Table 5.

As shown in the second column, MAZE is much faster than
Shike and Gollum. MAZE has solved all the benchmarks in 68
seconds. The average time consumption is only 27 seconds.
Shrikes spent 300 seconds to solve 25% of them, and spent
more than 3000 seconds to solve 60% of the benchmarks.
Gollum solved 75% in 300 seconds and took more than 2500
seconds to solve 85%.

Further, MAZE can solve all the benchmarks. As a compar-
ison, Shrike can only solve 60% of them, and Gollum solved
85%. After a more in-depth analysis, we figured out SHRIKE
and Gollum failed mostly because of noises in heap primitives.
Specifically, for CVE-2016-7126, the source buffer for this
vulnerability is of size 0x20. There are many objects of size
0x20 in PHP, causing many noises in the POC path and the
heap primitives and lowering the success rate of SHRIKE and
Gollum. MAZE utilizes Linear Diophantine Equation to
bypass the noise problem, regardless of the fact that all primi-
tives have at least one noise.

Thirdly, both Shrike and Gollum need a template provided
by security experts, to guide where to insert memory alloca-
tions and deallocations, as well as the allocation size. But
MAZE is fully automated. It can analyze the POC and deter-
mine the layout state, as well as whether fill or dig operations
are needed and where are the suitable instrumentation points.

Table 6: Evaluation results on Python and Perl.
Target Vulnerabilities Average time(s)

Python CVE-2007-4965, 2014-1912, Issue24105, 24095,
24094 100% in 118s

Perl Issue132544, 130703, 130321, 129024, 129012 100% in 141s

6.4 Python and Perl Benchmarks
To further evaluate the effectiveness, we also evaluated

MAZE on Python and Perl. We chose 10 vulnerabilities in
Python and Perl, and showed the evaluation result in Table 6.

Compared with Gollum [9], MAZE supports both Python
and Perl. It demonstrates that MAZE broadly extends the
application scope of Gollum. What’s more, as shown in the
third column, MAZE can generate expected heap layouts for
all the vulnerabilities, and is much faster than Gollum.

6.5 Synthetic Benchmarks
We further utilize synthetic benchmarks to perform flexi-

ble and scalable evaluation of the Dig & Fill algorithm, to
discover factors that can influence its performance.

To compare with other algorithms, we extended SHRIKE’s
benchmark with some modifications so that it can be adapted
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Figure 6: Influences of different number of noises.

to MAZE. First, MAZE generates heap layout primitives ran-
domly, each primitive contains variable amount of allocation
or deallocation operations (i.e., noises). Then, MAZE com-
bines these primitives randomly to derive the initial heap
layout. Third, MAZE randomly selects some memory holes
and allocation operations, expecting a layout that the selected
allocation operation takes the selected memory hole. Finally,
MAZE utilizes Dig & Fill algorithm to calculate a heap
interaction sequence to yield the expected layout.

6.5.1 Benchmark Setup
Besides the layout noise, we also tested other parameters

that may affect the success rate of heap layout manipulation.
• Noise number: It’s the minimum amount of noise opera-

tions placed in each primitive. Primitives could have more
noises than this threshold.

• (De)allocation primitives count: It’s the number of ran-
domly generated primitives for heap (de)allocation. This
factor represents the diversity of primitives.

• Size list: It represents the diversity of the size of allocation
operations in a primitive. Allocation operations in each
primitive will select one size from this list. The probability
of selecting each size is also adjustable.

• Mix of allocation and deallocation: It indicates that the
relative rate of heap allocation and deallocations in one
primitive. If this factor is None, each primitive can only
contain allocations or deallocations, but not both.

6.5.2 Evaluation of One-Object Layout Constraint
As aforementioned, a multi-object layout constraint can be

transformed into multiple one-object layout constraints. So
we will fully evaluate one-object layout constraint at first.

Factors Influencing Success Rate. SHRIKE demon-
strated that the noise impacts the success rate. For instance,
a single noisy allocation can make the success rate drop to
50% across all allocators. But as discussed in Section 5, the
diversity of heap layout primitives is the major factor that
influences the success rate of Dig & Fill, not the number of
noise. We will prove this with a concrete experiment.

Influence of noise count. First, we evaluated the success
rate of Dig & Fill using primitives with different noise
count. In this evaluation, the noise number ranges from 2
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Figure 7: Influences of different number of primitives.

to 7. To exclude the influence of other factors, the number
of (de)allocation and deallocation primitives is fixed to 3(4),
the length of the heap operation size list is 1, and the mix
of allocation and deallocation is None. For each setting, we
generated 200 random test case.

The result is shown in Figure 6, solid lines are the success
rates for different number of noises, while dotted lines rep-
resent the time cost. We can see that, the success rate keeps
between 98% and 100%, showing that the number of noises
does not influence the success rate of Dig & Fill. Further-
more, the time cost increases along with the number of noises,
since noises will make the heap layout more complicated and
cost more time to solve them.

Influence of primitive count. Then, we evaluated the suc-
cess rate using a different number of primitives. In this evalu-
ation, the allocation primitives count ranges from 2 to 7, and
the number of deallocation primitives is set to 1, and the noise
number is 5. Other configurations are the same as above.

The result is shown in Figure 7, the solid lines are the suc-
cess rate for different number of allocation primitives, while
the dotted lines represents the time interval spent to solve
the problem. We can see that, as the number of primitives
increases, the success rate also increases. This proves that
the diversity of primitives influences the success rate. But
even with only two primitives, the success rate can still reach
87.7%. Further, the time spent by MAZE to solve the problem
does not grow along with the number of primitives.

Table 7: The success rate and time interval in different non-
linear additivity situations.

Target Mix Size Diversity Mix + Diversity
pt_malloc 94.7% in 256s 98.9% in 384s 99.1% in 357s
dl_malloc 97.8% in 327s 100% in 433s 100% in 446s

Influence of Nonlinear Additivity. As discussed in Sec-
tion 5.4.2, to handle the nonlinear additive factors, MAZE
utilizes grouping, correcting and shifting techniques. For com-
plicated heap layouts, MAZE can only generate two-variable
or half Diophantine equations.

Table 7 shows the success rate and average time interval
spent for primitives without linear additivity. Although MAZE
can only generate half Diophantine equations, but the success

Table 8: Results of multi-object layout constraint evaluation.
Target Object count Time (s) Success rate Nature Reversed

PT 2 73.1 98.0% 72.1% 27.9%
PT 3 95.2 97.0% 55.1% 44.9%
PT 4 145.6 96.4% 52.2% 47.8%
PT 5 238.8 95.6% 50.4% 49.6%

rate of ptmalloc and dlmalloc are both more than 94% in
all the nonlinear additivity situations. The biggest impact of
nonlinear additivity is the time cost. Because MAZE can not
derive the heap interaction sequence by solving equations, so
it will spend more time for half Diophantine equations. Even
so, the average time interval is still lower than 10 minutes.
More detail of this experiment can be found in Appendix E.

6.5.3 Evaluation of Multi-object Position Constraint
Table 8 shows the evaluation result of multi-object layout

constraint solving. We set the noise to 3 and (de)allocation
primitive number to 3(4) respectively, and generate 100 ran-
dom heap layouts for each multi-object constraint. We eval-
uated 2 to 5 object constraints, and the result shows that the
success rate is more than 95% for all of them.

The success rate decreased and the time interval increased,
while the number of objects increases. The root cause is sim-
ple. With more object layout constraints, MAZE has to gener-
ate more Diophantine Equations to solve.

SHRIKE demonstrated that the order of allocation relative
to memory corruption direction also influenced the success
rate. We also evaluated this factor. In the last two columns,
the column Nature shows the ratio of cases, in which an
earlier allocation takes the lower memory address but a later
allocation takes the higher address, and the column Reversed
shows the contrary. Because the heap layout is randomly
generated, the Nature ratio drops when more objects layout
constraints are enforced. For 5 object constraints, the Nature
ratio is even 50%, but the success rate can still be 95.6%. So
this factor has few influences on the success rate.

7 Discussion of Scalability
Dig & Fill algorithm First of all, regardless of what the
applications are, Dig & Fill algorithm’s scalability is only
related to the adopted heap allocators. We have evaluated
the scalability of Dig & Fill in Section 6.5 with test cases
which are much more complicated than real world situation.
And the result shows that MAZE can solve more than 90% of
scenarios in minutes.

Some heap allocators (e.g. allocators in V8) utilize lots
of security mechanisms to increase the difficulty of mem-
ory layout manipulation. For example, the OldSpace and the
NewSpace mechanism makes it impossible to dig memory
holes and place noise objects, causing troubles even for hu-
man analysts. Moreover, these allocators also violate the four
rules defined in Section 2.3.2. So they are out of the scope
of MAZE. We will try to address these advanced security
mechanisms in the future.
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Heap layout primitive analysis Like many other solutions,
MAZE can also handle interpreters, such as PHP, Python
and Perl. It’s very challenging to handle programs whose
inputs can not be freely assembled, such as network programs.
MAZE utilizes symbolic execution to extract and analyze heap
primitives for such programs. But due to the well-known bot-
tleneck of symbolic execution, the current prototype of MAZE
is not evaluated on complicated network services. Instead, we
evaluated MAZE on CTF applications, which have similar pro-
cess logic, complicated allocators, and compact input format
requirements as network services.

Even for complicated network services, if its heap layout
primitives are provided to MAZE (e.g., by human), MAZE
can still generate the expected memory layout using its Dig
& Fill algorithm.

8 Conclusion
Few AEG solutions are able to manipulate heap layouts into

an expected state. We proposed a solution MAZE to transform
POC samples’ heap layouts into expected layouts and auto-
matically generate working exploits when possible. MAZE
extends heap layout primitives to reentrant code snippets in
event loop driven applications, and could efficiently recog-
nize and analyze them. MAZE further adopts a novel Dig &
Fill algorithm to assemble primitives to generate expected
layout, by deterministically solving a Linear Diophantine
Equation. It is very efficient and effective, comparing to ex-
isting solutions, and even supports multi-object constraints
and many heap allocators. Beyond heap layout manipulation,
AEG has a lot of other challenges to address.

Acknowledgement

This work was supported in part by Beijing Municipal
Science and Technology Project (No.Z181100002718002),
National Natural Science Foundation of China under Grant
61772308, 61972224 and U1736209, and BNRist Network
and Software Security Research Program under Grant
BNR2019TD01004 and BNR2019RC01009.

References

[1] S. Heelan, “Automatic generation of control flow hijacking
exploits for software vulnerabilities,” Ph.D. dissertation, Uni-
versity of Oxford, 2009.

[2] T. Avgerinos, S. K. Cha, B. Lim, T. Hao, and D. Brumley, “Aeg:
Automatic exploit generation,” in Network and Distributed
System Security Symposium, 2011.

[3] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleash-
ing mayhem on binary code,” in Security and Privacy (SP),
2012 IEEE Symposium on. IEEE, 2012, pp. 380–394.

[4] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy.” in USENIX Security Symposium, 2011,
pp. 25–41.

[5] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu,
and W.-M. Leong, “Crax: Software crash analysis for automatic
exploit generation by modeling attacks as symbolic continua-
tions,” in Software Security and Reliability (SERE), 2012 IEEE
Sixth International Conference on. IEEE, 2012, pp. 78–87.

[6] “Cve details,” 2019, online: accessed 26-Feb-2019. [Online].
Available: https://www.cvedetails.com/

[7] A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe,
2007.

[8] S. Heelan, T. Melham, and D. Kroening, “Automatic heap lay-
out manipulation for exploitation,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 763–779.

[9] ——, “Gollum: Modular and greybox exploit generation for
heap overflows in interpreters,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1689–1706.

[10] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation
for exploiting vulnerabilities in the linux kernel,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1707–1722.

[11] “Unlink Exploit ,” https://heap-exploitation.dhavalkapil.com/
attacks/unlink_exploit.html, 2018, online: accessed 01-May-
2018.

[12] “Diophantine equation,” https://en.wikipedia.org/wiki/
Diophantine_equation, 2019, online: accessed 01-May-2019.

[13] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform
for in-vivo multi-path analysis of software systems,” in Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, 2011.

[14] D. Repel, J. Kinder, and L. Cavallaro, “Modular synthesis of
heap exploits,” in Proceedings of the 2017 Workshop on Pro-
gramming Languages and Analysis for Security, 2017, pp. 25–
35.

[15] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to ex-
ploitable,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM,
2018, pp. 1914–1927.

[16] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel,
and G. Vigna, “Heaphopper: Bringing bounded model check-
ing to heap implementation security,” in 27th {USENIX} Secu-
rity Symposium ({USENIX} Security 18), 2018, pp. 99–116.

[17] B. Garmany, M. Stoffel, R. Gawlik, P. Koppe, T. Blazytko,
and T. Holz, “Towards automated generation of exploitation
primitives for web browsers,” in Proceedings of the 34th An-
nual Computer Security Applications Conference, 2018, pp.
300–312.

[18] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze:
Towards facilitating exploit generation for kernel use-after-
free vulnerabilities,” in 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018.

[19] W. Wu, Y. Chen, X. Xing, and W. Zou, “{KEPLER}: Facil-
itating control-flow hijacking primitive evaluation for linux
kernel vulnerabilities,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1187–1204.

[20] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to auto-

1660    30th USENIX Security Symposium USENIX Association

https://www.cvedetails.com/
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
https://en.wikipedia.org/wiki/Diophantine_equation
https://en.wikipedia.org/wiki/Diophantine_equation


matically exploit smart contracts,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 1317–1333.

[21] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Auto-
matic generation of data-oriented exploits.” in USENIX Secu-
rity Symposium, 2015, pp. 177–192.

[22] K. Ispoglou, B. Albassam, T. Jaeger, and M. Payer, “Block
oriented programming: Automating data-only attacks,” 2018.

[23] J. Vanegue, “The automated exploitation grand challenge,” in
presented at H2HC Conference, 2013.

[24] ——, “The automated exploitation grand challenge, a five-year
retrospective,” in IEEE Security & Privacy Langsec Workshop,
2018.

[25] “The gnu c library (glibc),” 2019, online: accessed 26-Feb-
2019. [Online]. Available: https://www.gnu.org/software/libc/

[26] “A memory allocator by doug lea,” 2019, online: accessed
26-Feb-2019. [Online]. Available: http://gee.cs.oswego.edu/dl/
html/malloc.html

[27] P. Argyroudis and C. Karamitas, “Exploiting the jemalloc mem-
ory allocator: Owning firefox?s heap,” Blackhat USA, 2012.

[28] M. Daniel, J. Honoroff, and C. Miller, “Engineering heap over-
flow exploits with JavaScript,” in Workshop on Offensive Tech-
nologies (WOOT), 2008.

[29] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“Addresssanitizer: A fast address sanity checker,” in the 2012
USENIX Annual Technical Conference, 2012, pp. 309–318.

[30] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detec-
tor of uninitialized memory use in c++,” in Code Generation
and Optimization (CGO), 2015 IEEE/ACM International Sym-
posium on. IEEE, 2015, pp. 46–55.

[31] A. Samsonov and K. Serebryany, “New features in addresssan-
itizer,” 2013.

[32] “Dataflowsanitizer,” https://clang.llvm.org/docs/
DataFlowSanitizerDesign.html, 2018, online: accessed
01-May-2018.

[33] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,”
in Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

[34] T. Wei, J. Mao, W. Zou, and Y. Chen, “A new algorithm for
identifying loops in decompilation,” in International Static
Analysis Symposium. Springer, 2007, pp. 170–183.

[35] L. Cojocar, T. Kroes, and H. Bos, “Jtr: A binary solution for
switch-case recovery,” in International Symposium on Engi-
neering Secure Software and Systems. Springer, 2017, pp.
177–195.

[36] C. Cifuentes and M. Van Emmerik, “Recovery of jump ta-
ble case statements from binary code,” Science of Computer
Programming, vol. 40, no. 2-3, pp. 171–188, 2001.

[37] S. Andersen and V. Abella, “Data Execution Prevention:
Changes to Functionality in Microsoft Windows XP Ser-
vice Pack 2, Part 3: Memory Protection Technologies,” http:
//technet.microsoft.com/en-us/library/bb457155.aspx, 2004.

[38] PaX-Team, “PaX ASLR (Address Space Layout Randomiza-
tion),” http://pax.grsecurity.net/docs/aslr.txt, 2003.

[39] “Ctf time,” https://ctftime.org, 2018, online: accessed 01-May-
2018.

[40] “Obfuscator-llvm,” 2019, online: accessed 26-Feb-2019. [On-
line]. Available: https://github.com/obfuscator-llvm/obfuscator

A Proof of Theorem 1

Bezout’s Lemma. A Linear Diophantine Equation:
a1x1 +a2x2 +a3x3 + ...+anxn = d

has an integer solution (x1, x2, . . . , xn), if and only if d is
a multiple of the greatest common divisor gcd(a1, a2, . . . , an).

If there are at least one dig and one fill primitive, the
Linear Diophantine Equation has positive and negative
integers, and it’s as below:

∆d f 1x1 + ...∆d f nxn−∆dd1y1− ...∆ddmym +d = 0 (1)

where ∆d f 1...∆d f n > 0 and +∆d f i(i = 1,2..n) is the Delta
Distance of each fill primitive, ∆dd1...∆ddm > 0 and -∆ddi is
the Delta Distance of each dig primitive.

According to the lemma, if gcd(d f 1, d f 2, . . . , d f n,dd1, dd2,
. . . , ddm,) divides d, the Linear Diophantine Equation 1
have an integer solution, let the solution be x∗1 . . . x∗n, y∗1 . . . y∗m.

If there are integers xgi and ygi(i = 1,2..n) and

∆d f 1xg1 + ...∆d f nxgn−∆dd1yg1− ...∆ddmygm = 0 (2)

Equation 2 can be changed into:

∆d f 1xg1 + ...∆d f nxgn = ∆dd1yg1 + ...∆ddmygm (3)

For equation 3, if n ≤ m, we select ∀xgi, and let
xgi=∑

m−n+1
j=1 xgi j, and equation 3 can be changed into:

∆d f 1xg1+...∆d f i

m−n+1

∑
j=1

xgi j+...∆d f nxgn =∆dd1yg1+...∆ddmygm

(4)
For equation 4, the left and right side have the same number of
terms. So we can select ∀xgi and ∀ygi from each side, and let
xgi=lcm(∆d f i, ∆ddi)÷∆d f i, and ygi=lcm(∆d f i, ∆ddi)÷∆ddi,

Because ∆d f 1...∆d f n > 0 and ∆dd1...∆ddm > 0, therefore xgi
> 0(i = 1,2...n) and ygi > 0(i = 1,2...m).

Then Linear Diophantine Equation 1 has a general
solution (where k are integers):

x1 = x∗1 + kxg1
...

xn = x∗n + kxgn
y1 = y∗1 + kyg1

...
ym = y∗m + kygm

Because xgi > 0(i = 1,2...n) and ygi > 0(i = 1,2...m), therefore
no matter x∗i and y∗i are positive or negative, we can get a
positive solution by increasing k.
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B Linear Additivity of Dig and Fill Primitives
In this section, we assume that the size of O and P are equal.

If their sizes are not equal, the cause of non-linear additivity
may be different, but MAZE can still use the same techniques
to derive new linear additive primitives.

If the Delta Distance of a dig and a fill primitive are
d1 and d2, after MAZE inserted them into the POC path, the
Target Distance changed from d to d + d1 + d2, then we
call the two primitives are linearly additive. Only if all the
primitives in Linear Diophantine Equation are linearly
additive, the solution can be used to guide the combination of
primitives and counteract the noise. But due to the complexity
of allocators, especially the splitting and merging mechanism,
not all the primitives are linearly additive. The non-linear
additivity can be divided into two types:

Non-linearly accumulated with the same type of primi-
tives: This type of non-linear additivity is caused by the
mix of allocations and deallocations in one primitive. For
example, if a deallocation sub-primitive of a dig primitive
has allocation operations, they may wrongly fill other holes
created by other dig primitives, so this type of dig primitives
are not linearly accumulated with themselves.

Non-linearly accumulated with different types of primi-
tives Many allocators support the splitting mechanism. If
there is a memory hole that is larger than the size of an alloca-
tion, allocators usually split the bigger chunk into two smaller
parts and return one part to service the allocation.

After an in-depth analysis, we found three types of heap
operation mainly cause this type of non-linear additivity. 1)
Bad allocation: its size is not equal to the target allocation
O’s. 2) Bad hole: its size is not equal to the target hole P’s.
3) Little allocation: its size is less than half of P’s.

It because, according to rule 3 in Section 2.3.2, if the mem-
ory hole’s size is equal to the allocation request, it has a higher
re-use priority. So bad holes in dig primitives will always
have a lower priority than P. Therefore they can not place
the target allocation O. It means that they have no contri-
bution to Delta Distance. But according to rule 2 in Sec-
tion 2.3.2, the bad allocations in fill primitives can be
placed in any freed area, including the bad holes and the
target hole P, so they can contribute to Delta Distance. If
the bad allocations fill the bad holes, they do not have
linear additivity.

For little allocation, due to the splitting mechanism
in allocators, P will be cut into a smaller hole, and O can not be
placed at P again, which means the hole is filled. So the Delta
Distance is measured as +1. But if the primitive is added
again, the little allocation will be placed at the rest part
of P, i.e. Delta Distance is 0. Therefore this primitive does
not have linear additivity.

To solve the above problems, MAZE utilizes three tech-
niques:
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Figure 8: a Grouping technique example.

Grouping Grouping’s core idea is to put multiple dig or
fill primitives together and create a new primitive which is
linearly accumulative with itself.

As shown in Figure 8, there is a dig primitive which is not
linearly accumulated with itself. Then MAZE keeps inserting
this dig primitive and the number of memory holes and allo-
cations grows periodically, so the Delta Distance of this
dig primitive will also change periodically. MAZE puts all the
primitives in one cycle together and derives a new dig primi-
tive. In Figure 8, one cycle includes three dig primitives, after
grouping, Delta Distance of the new dig primitive group is
-6 (-1-2-3), and the new dig primitive is linearly accumulative
with itself. The same operation can also be applied for fill
primitives.

Correcting MAZE also needs to correct the Target
Distance and Delta Distance. For example, if there is a
deallocation in a fill primitive and the allocator adopts a LIFO
policy, the memory hole created by this fill primitive has a
higher priority than the target hole P. So O will always be
placed into this noise hole. To reach the expected heap layout,
this memory hole and P must coincide, which means the noise
allocation should be placed in P and then be freed to create
a same memory hole as P.So Target Distance needs to be
corrected.

MAZE corrects the Delta Distance and calculates a d f ix
and generates a new Linear Diophantine Equation as be-
low: ∆d1x1 + · · ·+∆dixi + ...+∆dnxn +d +d f ix = 0

x1,x2,x3...xn ≥ 0
xi > 0

Shifting There are also bad allocations and bad holes
in POC’s execution trace. So after inserting a linear additive
primitive, the actual change of Target Distance may not
equal to the Delta Distance.

So MAZE utilizes the shifting technique to counteract
the non-linear additive factors in POC. If there are bad or
little allocations, MAZE keeps inserting dig primitives
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until all of them are placed in the newly created memory
holes. Similarly, if there are bad holes, MAZE keeps insert-
ing fill primitives to fill all of them. Then MAZE evaluates
the new Target Distance and generates another Linear
Diophantine Equation.

C Generate Diophantine Equations Based on
Primitives’ Linear Additivity

After grouping, correcting and shifting techniques, MAZE
can derive new heap layout primitives which have better lin-
ear additivity, and then generate different types of Linear
Diophantine Equations

C.1 Multi-Variable Diophantine Equation
If fill primitives do not contain bad allocations or

little allocations. These fill primitives are linearly ac-
cumulated with almost arbitrary dig primitives. If MAZE can
also find dig primitives that are linearly accumulated with
dig primitives, then MAZE can generate a Multi-variable
Diophantine Equation to derive the expected memory lay-
out. Similarly, MAZE also searches dig primitives which con-
tain no bad hole, and the following process is the same.

C.2 Two-Variable Diophantine Equation
If a fill pritimive contains bad or little allocations,

or a dig primitive contains bad holes, but they are lin-
early accumulated with each other, MAZE will generate a
Two-Variable Diophantine Equation for them. It may
be extremely complicated to find three or more primitives
that containts bad allocations or holes but are linearly
accumulated with each other. It because MAZE has to enumer-
ate all the possible permutations. So MAZE only generates
Two-Variable Diophantine Equation for this situation.

C.3 Half Diophantine Equation
If all the primitives contains bad or little

allocations or bad holes, and MAZE can not find
a pair of dig and fill primitives that are accumulated with each
other, MAZE will utilize the grouping technique again. In
this grouping process, MAZE will select a pair of primitives
and insert lots of dig primitives first, then keep inserting fill
primitives and derives another new fill primitive group. This
new fill primitive that the dig primitive are linearly additive
now.

In this situation, it is almost impossible to measure
the Target Distance, so MAZE will generate a Half
Diophantine Equation without Target Distance. If the
Delta Distance of the dig and the new fill primitive are co-
prime, which means that gcd(∆d1, ∆d2) = 1, it can always
divide Target Distance and the Linear Diophantine
Equation will always have solutions.

MAZE infers the solution of Half Diophantine
equation in a novel way. If the Target Distance is greater
than 0, MAZE keeps inserting dig primitives, and if the
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Figure 9: The example of locating a memory hole.

Target Distance is less than 0, MAZE keeps inserting fill
primitives, until O is placed at P.

D Solutions to Equation Decoupling
For a specific heap layout, MAZE needs to find suitable

positions, i.e. memory holes, and then utilizes Dig & Fill
to place target objects at the appropriate target holes.

As discussed above, consistency between the hole creation
order and the object allocation order affects the success rate, as
well as the lack of primitive instrumentation points. Because
of these factors, MAZE proposed two techniques to adjust
the order of target allocations and target hole creations (de-
allocations), so that the system of Diophantine equations can
be decoupled.

Locate Suitable Memory Holes Based on the vulnerabil-
ity type and exploit technique, MAZE locates a potential target
hole P. For example, to exploit a heap overflow vulnerabil-
ity, a attacker needs to place a sensitive heap object next to
the overflowed object. As shown in Figure 9, MAZE will lo-
cate the overflowed object (Vul_object) first. If the adjacent
object (x_object) can be freed in another primitive (free_x)
and the size is equal to the sensitive object (victim_object),
MAZE will insert the deallocation primitive after the alloca-
tion of the overflowed object. Then MAZE utilizes Dig &
Fill to generate a Linear Diophantine Equation for the
sensitive object, because the fill and dig primitives’ inserting
point is after the allocation of the overflowed object, so that it
will not affect its position. Similarly, MAZE can also locate
the sensitive object first, then inserts a deallocation primitive
to free the object ahead of it, to create a target hole for the
overflowed object.

If the adjacent object can not be freed in another primi-
tive, MAZE will try to find appropriate memory holes (e.g.
contiguous holes) in the whole heap layout. If these memory
holes can be freed in different heap primitives, MAZE can
generate independent Diophantine equations by adjusting the
Dig & Fill timing for each target object’s allocation and
target hole’s deallocation. The core idea is to start a new Dig
& Fill after the previous object’s Dig & Fill is finished.
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Figure 10: The example of creating memory holes.

Create Suitable Memory Holes If MAZE failed to locate
suitable target holes, it would try to create them. First, MAZE
searches for the heap primitive whose last allocation (size
is equal to target object, i.e. overflowed object) can be freed
in another primitive. For example, as shown in Figure 10,
x_object’s size is equal to the overflowed object, and it is the
last allocation of create_x, it can also be freed in another prim-
itive (free_x). Then MAZE searches for a primitive, which
contains an allocation (size is equal to another target object,
i.e. the sensitive object). In this example, it is the create_y.
The next step is to insert create_x and create_y into the POC’s
beginning. Before the insertion, MAZE will utilize heap spray
to fill all the holes in heap layout, so that all the objects allo-
cated in create_x and create_y can be adjacent. Then MAZE
will calculate the number of objects allocated before y_object
in create_y and create the same amount of memory holes
(the free holes hexagon in Figure 10) so that x_object and
y_object can be adjacent. In the end, MAZE will free x_object,
and then utilize Dig & Fill to generate a Diophantine equa-
tion for the overflowed object, after the object is placed at
x_object’s address, MAZE will use Dig & Fill to place the
sensitive object. This solution can be applied to segregated
storage allocators (tcmalloc, jemalloc) and boundary tag allo-
cators (ptmalloc, dlmalloc).

If there is no such primitive, MAZE will create a memory
hole with enough size to hold multi-objects. Then MAZE
slightly changes the Dig & Fill algorithm to support plac-
ing an object to a memory hole with unequal size. The only
difference is the cause of non-linear additivity. But MAZE
can still use grouping, correcting and shifting techniques to
derive new linear additive primitives. In the end, MAZE only
needs to place objects to the big memory hole one by one by
using Dig & Fill. This solution can be applied to boundary
tag allocators that support the splitting mechanism, such as
ptmalloc and dlmalloc.
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0.0

0.2

0.4

0.6

0.8

1.0

ptmalloc dlmalloc
half

bin

multi

Figure 11: Proportion of multi-variable, two-variable and
half Linear Diophantine Equation in different nonlinear
additive situation.

E Influence of Nonlinear Additivity
The mix of allocations and deallocations and size diver-

sity are non-linear additive factors. So we also evaluated the
Dig & Fill algorithm on a more complex heap layout situ-
ation. In this evaluation, the allocation primitives count is 6,
deallocation is 5, and the noise number is 5.

Mix of allocations and deallocations: We added 2 to 8 al-
locations to each dig primitive’s deallocation part and 2 deallo-
cations to each fill primitive and evaluated MAZE against 200
random test cases. The result is shown in Figure 11. Because
all the allocations’ size is the same, most of the generated
Diophantine equations are multi-variable.

Size diversity: We added a size list that contains 5 random
allocation sizes, and each primitive selected one size form
this list randomly, the selection probability of each size is
5:2:1:1:1. The result is also shown in Figure 11. In this test,
for almost 50% of the test cases, MAZE can only generate
half Diophantine equations.

Mix + Size diversity: We put above two nonlinear additive
factors together, and the result is also in Figure 11. MAZE
still generated half Diophantine equations for 50% of the test
cases. So we can conclude that the size diversity factor has
more influence on the nonlinear additivity of primitives, and
MAZE has to generate more half Diophantine equations.
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