Performance, Correctness, Exceptions: Pick Three

Performance, Correctness, Exceptions:
Pick Three

Andrea Gussoni, Alessandro Di Federico,
Pietro Fezzardi, Giovanni Agosta

Politecnico di Milano

24 February 2019

1/36

Performance, Correctness, Exceptions: Pick Three

Table of Contents

Motivations

rev.ng

Design
B Experimental Results

Conclusions

2/36

Performance, Correctness, Exceptions: Pick Three

Motivations

Static binary translation has a variety of possible uses:
m Support for legacy code.
m Performance improvement for legacy architectures.

m Instrumentation of code.

3/36

Performance, Correctness, Exceptions: Pick Three

Goals

m Improve the performance of the translated binaries.

m Do not reinvent the wheel, use as much as possible off-the-shelf
components.

m Be architecture independent, as the the whole rev.ng framework.

4/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

Table of Contents

rev.ng

5/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

rev.ng

6/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

rev.ng

input.elf

Lift to
QEMU IR

Translate
to LLVM IR

Recompile
(output.elf)

Performance, Correctness, Exceptions: Pick Three

rev.ng

rev.ng

Lift to
QEMU IR

Translate
to LLVM IR

Function
Isolation

Recompile

output.elf

7/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

The root Function

m At the present time, the lifting phase places all the code recovered
from the binary in a single (and often large) LLvM function, that we
call root.

8/36

Performance, Correctness, Exceptions: Pick Three

The root Function

<] [Wk; r)
ail il ﬁ% (N
< |
— —
NI I
| | / T
] A | —

1i
L]

LM
Vmi\\

9/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

The Dispatcher

m What about indirect branches or indirect function calls (e.g. jmp
rax)?

m We need the dispatcher.

10/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

The Dispatcher

switch i64 @pc, label %dispatcher.default [
i64 4194536, label %bb._init
i64 4194542, label %bb._init.0x6
i64 4194547, label %bb._init.oxb
i64 4194560, label %bb._start
i64 4194582, label %bb._start_c
i64 4194614, label %bb._start.0x36
i64 4194624, label %bb.deregister_tm_clones
i64 4194645, label %bb.deregister_tm_clones.@x15
i64 4194655, label %bb.deregister_tm_clones.0x1f
i64 4194672, label %bb.deregister_tm_clones.0x30
i64 4194688, label %bb.register_tm_clones
i64 4194723, label %bb.register_tm_clones.0x23
i64 4194733, label %bb.register_tm_clones.@x2d
i64 4194744, label %bb.register_tm_clones.@x38

11/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

Current Limitations

m One mayor problem of the dispatcher is that every time we need to
pass through it, we pay an high cost in terms of performance.

m The CFG of the root function contains a lot of unnecessary edges,
and this leads to a mazy topology.

m This topology prevents a lot of opt optimizations.

12/36

Performance, Correctness, Exceptions: Pick Three

rev.ng

Current Limitations

bb.dispatcher:
switch . . .

v

bb.main:
store @ Q@rax
br %bb.main.ox8

v

bb.main.0x8:
%1 = load @rax

13/36

Performance, Correctness, Exceptions: Pick Three

Table of Contents

Design

14/36

Performance, Correctness, Exceptions: Pick Three

A naive approach

m The natural thing to do is try to reconstruct (with some
approximations) the original function layout.

m Will things break? (Spoiler: yes, they will).

15/36

Performance, Correctness, Exceptions: Pick Three

Bird View

def root():

bb.foo:
bb.foo.0x8:

bb.main:
bb.main.0xa:

bb.bar:
bb.bar.0x4:

16/36

Performance, Correctness, Exceptions: Pick Three

_ e ___

Bird View
def foo():
def root(): oI5, Fo-
bb.foo0.0x8:
bb.foo:
bb.foo.0x8:
_ def main():
bb.main: bb.main:

bb.main.0xa: bb.main.oxa:

bb.bar:

bb.bar.0x4:
def bar():
bb.bar:
bb.bar.ox4:

16/36

Performance, Correctness, Exceptions: Pick Three

Bird View

def foo():
def root(): bb.foo:
bb.foo0.0x8:
bb.foo:
bb.foo.0x8:
(on
_ def main(): 2
bb.main: bb.main: §
bb.main.0xa: bb.main.oxa: ||z
3
bb.bar:
bb.bar.0x4:
def bar():
bb.bar:
bb.bar.ox4:

16/36

« What if we make the isolated functions
and the root function coexist?

17/36

Performance, Correctness, Exceptions: Pick Three

Isolated and Non-lsolated Realms

We define these two realms:

Isolated Realm In this realm, we have a new LLVM function for each
function discovered by the FBDA.

Non-Isolated Realm In this realm the original root function has been
preserved, basically unaltered.

18/36

Performance, Correctness, Exceptions: Pick Three

To the Isolated Realm and Back

m Transitioning to the isolated realm is easy, every time we find a basic
block that is an entry point of a function, we call the corresponding
isolated function in the isolated realm.

m The transition in the opposite direction is more complicated, our idea
is to exploit the exception handling mechanism provided by LLVM.

19/36

Performance, Correctness, Exceptions: Pick Three

To the Isolated Realm and Back

def root(): def foo():
dispatcher: bb.foo:
switch (pc): br bb.bar

1 label %bb.foo throw exception

2 label %bb.main
3 label %bb.bar

def main():
bb.foo: bb.main:
invoke foo() call foo()
ret
bb.main:
invoke main()
def bar():
bb.bar: bb.bar:

invoke bar() - -
ret

20/36

Performance, Correctness, Exceptions: Pick Three

To the Isolated Realm and Back

def root(): def foo():
dispatcher: bb.foo:
switch (pc): br bb.bar

1 label %bb.foo throw exception

2 label %bb.main
3 label %bb.bar

def main():
bb.foo: bb.main:
invoke foo() > call foo()
ret
bb.main:
invoke main()
def bar():
bb.bar: bb.bar:

invoke bar() - -
ret

20/36

Performance, Correctness, Exceptions: Pick Three

To the Isolated Realm and Back

def root(): def foo():
dispatcher: bb.foo:
switch (pc): br bb.bar
1 label %bb.foo throw exception
2 label %bb.main
3 label %bb.bar)
def main():
bb.foo: bb.main:
invoke foo() call foo()
ret
bb.main:
invoke main()
def bar():
bb.bar: bb.bar:
invoke bar() - -
ret

20/36

Performance, Correctness, Exceptions: Pick Three

Design

To the Isolated Realm and Back

def root():

dispatcher:

switch (pc):
1 label %bb.foo
2 label %bb.main
3 label %bb.bar

bb.foo:
invoke foo()

bb.main:
invoke main()

bb.bar:
invoke bar()

def foo():

bb.foo:
br bb.bar
throw exception

/

def main():

bb.main:
call foo()
ret

def bar():

bb.bar:

ret

20/36

Performance, Correctness, Exceptions: Pick Three

To the Isolated Realm and Back

def root(): def foo():
dispatcher: bb.foo:
switch (pc): br bb.bar

1 label %bb.foo throw exception

2 label %bb.main
3 label %bb.bar

def main():
bb.foo: bb.main:
invoke foo() call foo()
ret
bb.main:
invoke main() *
def bar():
bb.bar: bb.bar:

invoke bar() - -
ret

20/36

Performance, Correctness, Exceptions: Pick Three

To the Isolated Realm and Back

def root(): def foo():
dispatcher: bb.foo:
switch (pc): br bb.bar

1 label %bb.foo throw exception

2 label %bb.main
3 label %bb.bar

def main():
bb.foo: bb.main:
invoke foo() call foo()
ret
bb.main:
invoke main()
def bar():
bb.bar: bb.bar:

invoke bar() - -
ret

20/36

Performance, Correctness, Exceptions: Pick Three

Exception Handling Mechanism

Our fallback mechanism is implemented using:
m The exception support provided by the LLvM framework.
m The stack unwinding mechanism via libgcc.

21/36

Performance, Correctness, Exceptions: Pick Three

Function lIsolation

m Function isolation is performed on the basis of the information
provided by the Function Boundaries Detection Analysis pass.

m The accuracy of the FBDA is an important factor for performing an
high quality function isolation.

m The quality of the function isolation determines how much the
fallback-mechanism is actually employed.

22/36

Performance, Correctness, Exceptions: Pick Three

Function Boundaries Analysis Limitations

m There are situations (e.g. exceptions in the original code), where the
good (or even optimal) quality of the FBDA will not be sufficient.

m Our fallback mechanism guarantees that we can handle the
execution in these situations.

m We handle exceptions with exceptions!

23/36

Performance, Correctness, Exceptions: Pick Three

Experimental Results

Table of Contents

B Experimental Results

24/36

Performance, Correctness, Exceptions: Pick Three

Experimental Results

Experimental Setup

m We used the SPECint 2006 benchmark suite.

m 4 configurations:
= Native
® QEMU
m rev.ng
m rev.ng with isolation

25/36

Performance, Correctness, Exceptions: Pick Three
Experimental Results

Experimental Results

’ B8gemullBrev.nglBisolated

X
i
~ X X X
— X :: © 8"
16x g — 2 8
c
S 8%
43 4
X
3
v 2x
<
@
Q

Figure: Slowdown of the different translation techniques compared to native
code. Logarithmic scale. Lower is better.

26/36

Performance, Correctness, Exceptions: Pick Three

Conclusions

Table of Contents

Conclusions

27/36

Performance, Correctness, Exceptions: Pick Three

Conclusions

Future Work

m Recognize function parameters.
m Recognize return values.

m Promote global variables (registers) to local variables when possible.

28/36

Performance, Correctness, Exceptions: Pick Three

Conclusions

Resources

m The function isolation feature has been implemented in rev.ng as a
LLVM pass.

m The artifacts produced during the work, the code and the
instructions to reproduce them are available at
https://rev.ng/gitlab/revng-bar-2019/artifacts.

m If you are interested in more general instructions on how to get
started with rev.ng, you can check the official website at
https://rev.ng/getting-started.html.

29/36

https://rev.ng/gitlab/revng-bar-2019/artifacts
https://rev.ng/getting-started.html

Performance, Correctness, Exceptions: Pick Three

Conclu

ns

Questions?

30/36

Performance, Correctness, Exceptions: Pick Three

Conclusions

License

HO

These slides are published under a Creative Commons Attribution-ShareAlike 4.0

license.

31/36

Performance, Correctness, Exceptions: Pick Three

Backup Slides

Backup Slides

32/36

Performance, Correctness, Exceptions: Pick Three

LLVM

IR

int counter;

int main(int argc) {
if (argc > 5) {

counter++;

} else {
myfunction();

}

return 1;

@counter = common global i32 @

define i32 @main (i32 %argc) {
%1 = icmp sgt 132 %argc , 5
br i1 %1 , label %yes , label %no

yes
%2 = load i32 , i32 * Q@counter
%3 = add 132 %2 , 1
store 132 %3 , 132 x @counter
br label %end

no :
call void @otherfunction ()

br label %end

end
ret i32 1

33/36

Performance, Correctness, Exceptions: Pick Three

Exception Handling Mechanism

To do this, we mainly used the exception handling mechanism provided
by LLVM. In our solution, this mechanism is in charge of recovering a
potentially faulty situation, for example when static analysis cannot
foresee the destination of a jump, taking care of redirecting the execution
to a component that is in charge of understanding what to do next.

34/36

Performance, Correctness, Exceptions: Pick Three

Exception Handling Mechanism

At the implementation level, for using exceptions we need to:

m Replace in the root function, each function entry basic block body
with an invoke instruction (a peculiar call instruction) to the
isolated function.

m In the isolated realm, each time we need to exit from the isolated
function in an unexpected manner, throw an exception.

m Provide to LLVM a personality function, which is a function that is in
charge of specifying the runtime behavior when an exception is
thrown.

35/36

Performance, Correctness, Exceptions: Pick Three

csv

m rev.ng represents the current CPU state using the so called CSV
(CPU state variable), which are LLvM global variables.

m In the general case, this is a great bottleneck for the performances
(we need to go through memory).

36/36

	Motivations
	rev.ng
	Design
	Experimental Results
	Conclusions
	Appendix
	Backup

