
Boosting Fuzzer Efficiency:
An Information Theoretic Perspective

Marcel Böhme
Monash University, Australia
marcel.boehme@acm.org

Valentin J.M. Manès
CSRC, KAIST, Korea

valentinmanes@outlook.fr

Sang Kil Cha
CSRC, KAIST, Korea
sangkilc@kaist.ac.kr

ABSTRACT

In this paper, we take the fundamental perspective of fuzzing as a
learning process. Suppose before fuzzing, we know nothing about
the behaviors of a program P: What does it do? Executing the first
test input, we learn how P behaves for this input. Executing the
next input, we either observe the same or discover a new behavior.
As such, each execution reveals łsome amountž of information
about P’s behaviors. A classic measure of information is Shannon’s
entropy. Measuring entropy allows us to quantify how much is
learned from each generated test input about the behaviors of the
program. Within a probabilistic model of fuzzing, we show how
entropy also measures fuzzer efficiency. Specifically, it measures the
general rate at which the fuzzer discovers new behaviors. Intuitively,
efficient fuzzers maximize information.

From this information theoretic perspective, we develop En-

tropic, an entropy-based power schedule for greybox fuzzing
which assigns more energy to seeds that maximize information. We
implemented Entropic into the popular greybox fuzzer LibFuzzer.
Our experiments with more than 250 open-source programs (60
million LoC) demonstrate a substantially improved efficiency and
confirm our hypothesis that an efficient fuzzer maximizes infor-
mation. Entropic has been independently evaluated and invited
for integration into main-line LibFuzzer. Entropic now runs on
more than 25,000 machines fuzzing hundreds of security-critical
software systems simultaneously and continuously.

KEYWORDS

software testing, fuzzing, efficiency, information theory, entropy

1 INTRODUCTION

Due to its efficiency, fuzzing has become one of the most successful
vulnerability discovery techniques. For instance, in the three years
since its launch, the ClusterFuzz project alone has found about
16,000 bugs in the Chrome browser and about 11,000 bugs in over
160 open source projectsÐonly by fuzzing.1 A fuzzer typically gen-
erates random inputs for the program and reports those inputs that
crash the program. But, what is fuzzer efficiency?

1https://github.com/google/clusterfuzz#trophies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409748

In this paper, we take an information-theoretic perspective and
understand fuzzing as a learning process.2 We argue that a fuzzer’s
efficiency is determined by the average information that each gener-
ated input reveals about the program’s behaviors. A classic measure
of information is Shannon’s entropy [37]. If the fuzzer exercises
mostly the same few program behaviors, then Shannon’s entropy
is small, the information content for each input is low, and the
fuzzer is not efficient at discovering new behaviors. If however,
most fuzzer-generated inputs exercise previously unseen program
behaviors, then Shannon’s entropy is high and the fuzzer performs
much better at discovering new behaviors.

We leverage this insight to develop the first entropy-based power
schedule for greybox fuzzing. Entropic assigns more energy to
seeds revealing more information about the program behaviors.
The schedule’s objective is to maximize the efficiency of the fuzzer
by maximizing entropy. A greybox fuzzer generates new inputs
by slightly mutating so-called seed inputs. It adds those generated
inputs to the corpus of seed inputs which increase code coverage.
The energy of a seed determines the probability with which the
seed is chosen. A seed with more energy is fuzzed more often. A
power schedule implements a policy to assign energy to the seeds
in the seed corpus. Ideally, we want to assign most energy to those
seeds that promise to increase coverage at a maximal rate.

We implemented our entropy-based power schedule into the pop-
ular greybox fuzzer LibFuzzer [25] and call our extension Entropic.
LibFuzzer is a widely-used greybox fuzzer that is responsible for
the discovery of several thousand security-critical vulnerabilities
in open-source programs. Our experiments with more than 250
open-source programs (60 million LoC) demonstrate a substantially
improved efficiency and confirm our hypothesis that an efficient
fuzzer maximizes information.

After a successful independent evaluation of Entropic by the
company that develops LibFuzzer, our tool Entropic is currently
the subject of public code review to be integrated into main-line
LibFuzzer. Once integrated, Entropicwill run onmore than 25,000
machines fuzzing hundreds of security-critical software systems
simultaneously and continuously. Entropic is available as open-
source and will be linked here upon acceptance.

In order to stand our information theoretic perspective on solid
foundations, we explore a probabilistic model of the fuzzing pro-
cess. We demonstrate how Shannon’s entropy quantifies the rate
at which a non-deterministic blackbox fuzzer discovers new behav-
iors in an (hypothetically) infinitely long fuzzing campaign. Simply
speaking, if we are interested in achieving code coverage, Shan-
non’s entropy quantifies the gradient of the coverage increase. We
also show how non-deterministic greybox fuzzing can be reduced
to a series of non-deterministic blackbox fuzzing campaigns, which

2As in, learning about the colors in an urn full of colored balls by sampling from it.

970

https://www.acm.org/publications/policies/artifact-review-badging
https://github.com/google/clusterfuzz#trophies
https://doi.org/10.1145/3368089.3409748

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

k k + 1

∆(k)

S (n)

#Test Inputs n

S

Figure 1: The expected number S(n) of program behaviors

that a test generator discovers as the number of generated

test inputs n increases. The rate ∆(n) = S(n+1)−S(n) at which

behaviors are discovered decreases over time. Function ∆(n)

gives the current discovery rate when the n-th test is gener-

ated. In the limit, the expected number of behaviors discov-

ered approaches the asymptote S .

allows us to derive the local entropy for each seed and the current
global entropy for the fuzzer. To efficiently approximate entropy,
we introduce several statistical estimators.

Our information-theoretic model explains the performance gains
of our entropy-based power schedule for greybox fuzzing. Our
schedule assigns more energy to seeds that have a greater local
entropy, i.e., that promise to reveal more information. However, we
also note that this information-theoretic model does not immedi-
ately apply to deterministic fuzzers which systematically enumerate
all inputs they can generate, or whitebox fuzzers that systemati-
cally enumerate all (interesting) paths they can explore. For our
probabilistic model to apply, the fuzzer should generate inputs in
a random manner (with replacement). If a deterministic phase is
followed by a non-deterministic phase (e.g., in the default config-
uration of the AFL greybox fuzzer), we can compute Shannon’s
entropy only for the non-determinstic phase.

In summary, our work makes the following contributions:

• We develop an information-theoretic foundation for non-
deterministic fuzzing which studies the average information
each test reveals about a program’s behaviors.

• We formally link Shannon’s entropy to a fuzzer’s behavior
discovery rate, i.e., we establish efficiency as an information-
theoretic quantity.

• We introduce several practical estimators of information that
are useful in the context of fuzzing.

• We present the first entropy-based power schedule to boost
the efficiency of greybox fuzzers.

• Weprovide an open-source implementation, called Entropic,
which will be linked here upon acceptance.

• We present a substantial empirical evaluation on over 250
widely-used, open-source C/C++ programs producing over 2
CPU years worth of data. Our data and R scripts are available
here: https://doi.org/10.6084/m9.figshare.12415622.v2.

2 A PROBABILISTIC FRAMEWORK FOR
BLACKBOX FUZZING

Fuzzing is an automatic software testing technique where the test
inputs are generated in a random manner. Based on the granularity
of the runtime information that is available to the fuzzer, we can
distinguish three fuzzing approaches. A blackbox fuzzer does not
observe or react to any runtime information. A greybox fuzzer

leverages coverage or other feedback from the program’s execution
to dynamically steer the fuzzer. A whitebox fuzzer has a perfect
view of the execution of an input. For instance, symbolic execution
enumerates interesting program paths.

Non-deterministic blackbox fuzzing lends itself to proba-
bilistic modeling because of the small number of assumptions about
the fuzzing process. Unlike greybox fuzzing, blackbox fuzzing is not
subject to adaptive bias.3 We adopt the recently proposed STADS
probabilistic model for non-deterministic blackbox fuzzing [5]: Each
generated input can belong to one or more species. Beyond the
probabilistic model, STADS provides biostatistical estimators, e.g.,
to estimate, after several hours of fuzzing, the probability of discov-
ering a new species or the total number of species.

2.1 Software Testing as Discovery of Species

Let P be the program that we wish to fuzz. We call as P’s input
spaceDDD the set of all inputs that P can take in. The fuzzing of P is
a stochastic process

F = {Xn | Xn ∈ DDD}Nn=1 (1)

of sampling N inputs with replacement from the program’s input
space. We call F as fuzzing campaign and a tool that performs F
as a non-deterministic blackbox fuzzer.

Suppose, we can subdivide the search spaceDDD into S individual
subdomains {Di }

S
i=1 called species [5]. An input Xn ∈ F is said to

discover speciesDi ifXn ∈ Di and there does not exist a previously
sampled input Xm ∈ F such thatm < n and Xm ∈ Di (i.e., Di is
sampled for the first time). An input’s species is defined based on the
dynamic program properties of the input’s execution. For instance,
each branch that is exercised by input Xn ∈ DDD can be identified as
a species. The discovery of the new species then corresponds to an
increase in branch coverage.

Global species discovery. We let pi be the probability that the
n-th generated input Xn belongs to species Di ,

pi = P[Xn ∈ Di] (2)

for i : 1 ≤ i ≤ S and n : 1 ≤ n ≤ N . We call {pi }Si=1 the
fuzzer’s global species distribution. The expected number of dis-
covered species S(n) can be derived as

S(n) =

S∑
i=1

[
1 − (1 − pi)

n
]
= S −

S∑
i=1

(1 − pi)
n
. (3)

Figure 1 shows an example of a species discovery curve S(n), i.e.,
the number of species covered with n generated test cases. We can
show that the number of species S that the fuzzer discovers in the

3Unlike for a blackbox fuzzer, for a greybox fuzzer the probability to observe certain
program behaviors during fuzzing changes as new seeds are added to the corpus.

971

https://doi.org/10.6084/m9.figshare.12415622.v2

Boosting Fuzzer Efficiency: An Information Theoretic Perspective ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

limit, i.e., the asymptotic total number of species is given as

S = lim
n→∞

S(n). (4)

The discovery rate ∆(n), i.e., the expected number of species dis-
covered with the (n + 1)-th generated test input is defined as
∆(n) = S(n + 1) − S(n). Discovery rate ∆(n) provides an excellent
stopping rule [2, 38]. One could abort fuzzing when an insufficient
progress is made for a long period of time, i.e., when ∆(n) < θ for
some θ .

2.2 Mutation-Based Blackbox Fuzzing

We extend the STADS framework with a model for mutation-based
fuzzing. Let C be a set of seed inputs, called the seed corpus and
qt be the probability that the fuzzer chooses the seed t ∈ C.4 For
each seed t , let DDDt be the set of all inputs that can be generated
by applying the available mutation operators to t . The mutational
fuzzing of t is a stochastic process

F t
=

{
X t
n | X t

n ∈ DDDt
}N t

n=1 (5)

of sampling N t inputs with replacement by random mutation of the
seed t . We call all species that can be found by fuzzing a seed t as
the species in t ’s neighborhood.

Local species discovery. We let pti be the probability that the n-
th input X t

n which is generated by mutating the seed t ∈ C belongs
to species Di ,

pti = P[X t
n ∈ Di] (6)

for i : 1 ≤ i ≤ S and n : 1 ≤ n ≤ N . We call {pti }
S
i=1 the local

species distribution in the neighborhood of the seed t . For a locally
unreachable species Dj , we have ptj = 0. Note that global and local

distributions, by the law of total expectation, are related as

pi =
∑
t ∈C

qt · p
t
i . (7)

for i : 1 ≤ i ≤ S such that by Equation (3),

S(n) =

S∑
i=1

[
1 −

(
1 −

∑
t ∈C

qt · p
t
i

)n]
. (8)

is the species discovery curve for a mutation-based blackbox fuzzer.

2.3 Assumptions

For our probabilistic model of non-deterministic (mutational) black-
box fuzzing, we require that global and local species distributions
are invariant throughout the fuzzing campaign, i.e.,

pi = P[Xn ∈ Di] = P[Xn+1 ∈ Di] and (9)

pti = P[X t
n ∈ Di] = P[X t

n+1 ∈ Di] (10)

for i : 1 ≤ i ≤ S and n : 1 ≤ n < N , where qt is the probability that
the fuzzer chooses the seed t ∈ C, where Xn and Xn+1 are the n-th
and (n+1)-th test inputs that the fuzzer generates, respectively, and
whereX t

n andX t
n+1 are the n-th and (n+1)-th test inputs generated

by fuzzing the seed t , respectively.
This is satisfied if, for any program input d ∈ D in the program’s

input space, we have that P[Xn = d] = P[Xn+1 = d], i.e., the
probability to generate some input d is invariant throughout the

4This probability is also called the seed’s energy, weight, or perf_score (AFL).

campaign. Our model accommodates that a blackbox fuzzer may
generate inputs from a non-uniform distribution, i.e., for any two
inputs d1,d2 ∈ D, it is entirely possible that the probability that
n-th test input is d1 or d2 differs, i.e., P[Xn = d1] , P[Xn = d2].

For random testing tools and for generation- or mutation-based
blackbox fuzzers that generate inputs by some random process it is
realistic to assume that the probability to sample from a subdomain
Di ⊆ DDD does not change during the fuzzing campaign.Without any
dynamic program feedback, a non-deterministic blackbox fuzzer
has no reason to vary its fuzzing heuristics during the campaign. A
mutation-based blackbox fuzzer usually has a fixed-size seed corpus
C and fixed-size set of mutation operators.

Otherwise, we make no assumptions about the number S , rela-
tive abundance {pi }

S
i=0, or distribution of species in the fuzzer’s

search space. Specifically, there is no assumption that species are
distributed equally. Some rare species (i.e., pi is very small) may
well be clustered within a small region of the input space.

3 AN INFORMATION-THEORETIC MEASURE
OF FUZZER EFFICIENCY

We provide an information-theoretic foundation for non-deter-
ministic blackbox fuzzing. In the context of fuzzing, Shannon’s
entropy H has several interpretations. It quantifies the average
information a generated test input reveals about the behaviors (i.e.,
species) of the program. Alternatively we say, a generated test input
reduces our uncertainty by H information units (e.g., nats or bits),
on average. Entropy also gives the minimum number of information
units needed to reliably store the entire set of behaviors the fuzzer
is capable of testing. Moreover, entropy is a measure of diversity. A
low entropy means that the program does either not exhibit many
behaviors or most generated inputs test the same behaviors (i.e.,
belong to an abundant species).

In this work, we show how entropy quantifies the efficiency of
a blackbox fuzzer in terms of the species discovery rate. However,
there are several challenges that we need to address. First, Shannon’s
entropy is defined in the case where each input belongs to exactly
one species. How can we define an entropy when an input can
belong to multiple species? Second, we cannot determine all the
species of P and their probabilities with regards to F unless we
know test cases for each species beforehand.5 How can we quickly
compute an approximate entropy? Third, we develop information-
theoretic boosting for greybox fuzzing. Yet, for greybox fuzzers the
probabilities {pi }Si=1 can vary throughout the fuzzing campaign,
which violates our assumptions (Sec.2.3). Is there a practical way
to enforce our assumptions for a greybox fuzzer?

3.1 Information Theory in a Nutshell

Shannon’s entropyH [37] measures the average amount of informa-
tion in each sample Xn ∈ F about the species that can be observed
by executing the program P. When there are S distinct species, the
entropy H is:

H = −

S∑
i=1

pi log(pi). (11)

5Determining Shannon’s entropy H may require probabilistic symbolic execution
which involves constraint solving and model counting [16, 18].

972

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

Urn 1. p1 =
3
4 , p2 =

1
4

H = 0.56
Urn 2. p1 = p2 =

1
2

H = 0.69

Urn 3. p1 =
1
4 , p2 =

1
2

p3 =
1
4 , H = 1.04

Figure 2: Learning colors by sampling with replacement.

Figure 2 illustrates the concept informally. Each color represents
a different species. We learn about the colors in each urn by sam-
pling. Just how much we learn from each sampling differs from
urn to urn. For instance, in Urn 1 it is three times more likely to
draw a white ball than a black. It takes more attempts to learn
about black balls in Urn 1 compared to Urn 2. Hence, we expect
less information about the urn’s colors in a draw from Urn 1. In
fact, given the same number of colors S , the entropy is maximal
when all colors are equiprobable p1 = . . . = pS . Among the three
urns, we expect to get the maximal amount of information about
the urn’s colors by drawing from Urn 3. Even though there is still
a dominating color (black), there is now an additional color (blue)
which can be discovered.

3.2 If Each Input Belongs to Multiple Species

Shannon’s entropy is defined for themultinomial distributionwhere
each input belongs to exactly one species (e.g., exercise exactly one
path). However, an input can belong to several species so that∑S
i=1 pi ≥ 1. For instance, considering a branch in P as a species,

each input exercises multiple branches. The top-level branch is ex-
ercised with probability one. When it is possible that

∑S
i=1 pi ≥ 1,

Chao et al. [13] and Yoo et al. [43] suggest to normalize the probabil-
ities and computeH = −

∑S
i=1 p

′
i log(p

′
i), such that p′i = pi/

∑S
j=1 pj .

This normalization maintains the fundamental properties of infor-
mation based on which Shannon developed his formula, i.e., that
information due to independent events is additive, that informa-
tion is a non-negative quantity, etc. The normalized entropy H is
computed as

H = −

S∑
i=1

p′i log(p
′
i) = log

©­«
S∑
j=1

pj
ª®¬
−

∑S
i=1 pi log(pi)∑S

j=1 pj
(12)

We refer to the Appendix for the derivation of this formula. We
note that Equation (12) reduces to Equation (11) for the special
case where

∑S
j=1 pj = 1. We also note that the resulting quantity is

technically not the average information per input.

3.3 The Local Entropy of a Seed

Recall from Section 2.2, that we call the probabilities {pti }
S
i=1 that

fuzzing a seed t ∈ C generates an input that belongs to species Di

as the local species distribution of t . Moreover, we call the set of
species {Di | p

t
i > 0∧ 1 ≤ i ≤ S} as the neighborhood of the seed t .

From the local species distribution of t , we can compute the local

entropy H t of t as a straight-forward application of Equation 12,

H t
= log

©­«
S∑
j=1

ptj
ª®¬
−

∑S
i=1 p

t
i log(p

t
i)∑S

j=1 p
t
j

. (13)

The local entropy H t of t quantifies the information that fuzzing t
reveals about the species in t ’s neighborhood.

3.4 Information-Theoretic Efficiency Measure

Intuitively, the rate at which we learn about program behaviors,
i.e., the species in the program, also quantifies a blackbox fuzzer’s
efficiency. We formally demonstrate how Shannon’s entropy H

characterizes the general discovery rate ∆(n) as follows.

Theorem 1. Let Shannon’s entropy be defined as in Equation (12).

Let ∆(n) be the expected number of new species the fuzzer discovers

with the (n + 1)-th generated test input, then

H = log(c) +
∞∑
n=1

∆(n)

cn
(14)

characterizes the rate at which species are discovered in an infinitely

long-running campaign, where c =
∑S
j=1 pj is a normalizing constant.

Proof. We refer to the Appendix for the proof. ■

According to Theorem 1, entropy measures the species discovery
rate ∆(n) over an infinitely long-running fuzzing campaign where
discovery is gradually discounted as the number of executed tests
n goes to infinity. In Figure 1, notice that ∆(n) ≥ 0 for all n ≥ 0.
If we simply took the sum of ∆(n) over all n, we would compute
the total number of species S =

∑∞
n=1 ∆(n). However, S provides

no insight on the efficiency of the discovery process. Instead, the
diminishing factor 1/n in Equation (14) reduces the contribution
of species discovery as testing effort n increases. The number of
species discovered at the beginning of the campaign has a higher
contribution to H then the number of species discovered later. In
other words, a shorter łramp upž time yields a higher entropy.

3.5 Maximum Likelihood Estimator

We estimate Shannon’s entropyH based on how often we have seen
each observed species. The incidence frequency Yi for species Di is
the number of generated test inputs that belong to Di . Undetected
species yield Yi = 0. An unbiased estimator of the local discovery
probability pi is p̂i = Yi/n, where n is the total number of generated
test inputs. By plugging p̂i into Equation (12), we can estimate the
entropy H using maximum likelihood estimation. In our model, the
estimated entropy ĤMLE of H is

ĤMLE = log
©­«
S∑
j=1

Yj
ª®¬
−

∑S
i=1 Yi log(Yi)∑S

j=1 Yj
, (15)

where we assume that
∑S
j=1 Yj > 0.

3.6 Tackling Adaptive Bias when Estimating
the Global Entropy of a Greybox Fuzzer

We introduced our probabilistic model for non-deterministic black-
box fuzzing which satisfies the assumption that the global species
distribution {pi }

S
i=1 is invariant during the campaign (Section 2.3).

973

Boosting Fuzzer Efficiency: An Information Theoretic Perspective ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

4.800

4.805

4.810

4.815

4.820

0 10 20 30

Time (in min)

E
ff

ic
ie

n
c
y
 E

s
ti
m

a
te Estimate

Blackbox (MLE)

6.14

6.16

6.18

6.20

6.22

0.1 1.0 10.0

Time (in h)

E
ff

ic
ie

n
c
y
 E

s
ti
m

a
te

Estimate

Greybox (MLE, biased)

Greybox (MLE, de−biased)

Figure 3: Entropy estimates of a blackbox fuzzer’s entropy

(top) and a greybox fuzzer’s entropy (bottom) over time. For

each speciesDi , we count the number of generated inputsYi
belonging to Di and in regular intervals compute ĤMLE per

Eqn. (15). For the de-biased estimator (bottom), we reset the

incidence frequencies Yi = 0 whenever a new seed is added.

However, this assumption does not hold for greybox fuzzing which
leverages program feedback. Generated inputs that have discovered
new species (i.e., increased coverage) are added to the corpus. The
availability of added seeds changes the global species distribution
(but not the local distributions for each seed) and thus the global
entropy for a greybox fuzzer. In other words, a greybox fuzzer
becomes more efficient over time.

Global entropy. Clearly, our probablistic model does not di-
rectly apply to model the efficiency of a non-deterministic greybox
fuzzer. However, it is still worthwhile to derive a reasonabe heuris-
tic to estimate the current global entropy for a greybox fuzzer. We
propose to consider greybox fuzzing as a series of mutation-based
blackbox fuzzing campaigns ⟨F1, F2, . . . , Fm⟩, each starting with a
fixed-size corpus right after a new seed has been added to the cor-
pus. Hence, for greybox fuzzers we suggest to estimate the global
entropy only from incidence frequencies that have been collected
since the last seed was added. We call this a de-biased estimator.

Figure 3.top6 shows the maximum likelihood estimate (MLE)
ĤMLE over time for a blackbox fuzzer.7 We can see that the estimate
approaches the true value reasonably fast: from under one minute
onwards, the entropy appears as a straight line. Hence, it is fair
to say that a monotonic increase in entropy would demonstrate a
dynamic increase in fuzzer efficiency.

Figure 3.bottom shows two entropy estimates over time for a
greybox fuzzer: the unmodified, adaptively biased MLE and the
de-biased MLE. We expect that the efficiency of a greybox fuzzer
and thus the entropy increases over time. As more seeds are added,
previously rare species become łless rarež. Indeed, we observe a

6Our experimental setup for Figure 3 and Figure 4 is discussed in Section 5.2.4.
7
LibFuzzer without the ability to add generated inputs to the corpus.

monotonic increase. The maximum likelihood estimator (MLE, bi-
ased) is computed from unmodified incidence frequencies Yi while
the de-biased estimator (MLE, de-biased) is computed from inci-
dence frequencies that are reset to zero whenever a new seed is
added. Considering a greybox fuzzing campaign as a series of black-
box campaigns, resetting will prevent any impact of adaptive bias
on the current entropy estimate.

In Figure 3.bottomwe observe that the de-biasedMLE approaches
the final entropy estimate much faster than the unmodified MLE. It
takes the unmodified, adaptively biased MLE more than 10 hours to
generate the same entropy estimate that the de-biased MLE gener-
ates in an hour. The drawback of resetting the incidence frequencies
to zero is compensated by a relative increase in the quality of the
collected data.

Local entropy. Unlike a fuzzer’s global entropy, a seed’s local
entropy is not subject to adaptive bias. Given seed t , let M be the
greybox fuzzer’s mutation operators, Lt be the set of locations
in t where a mutation operator can be applied. Without loss of
generality, suppose the fuzzer generates an input t ′ only when
applying the operatorm ∈ M to location l ∈ Lt .8 Then,

P[X t
n = t ′] = P[Atn =m] · P[Btn = l] and (16)

P[X t
n = t ′] = P[X t

n+1 = t ′] (17)

where X t
n is the n-th input that is generated from t by fuzzing t ,

X t
n+1 is the (n+1)-th input generated from t by fuzzing t ,Atn and Btn

are the mutation operator and mutation location in t , respectively,
and both are chosen at random when generating input X t

n .
Hence, a seed’s local entropy within a greybox fuzzer is unbiased.

The local distribution {pti }
S
i=1 is invariant throughout the campaign.

The probability pti to generate an input that belongs to species Di

by fuzzing seed t is the same every time t is chosen for fuzzing.

4 INFORMATION-THEORETIC BOOSTING

We present an entropy-based boosting strategy for greybox fuzzing
that maximizes the information each generated input reveals about
the species (i.e., behaviors) in a program. Our technique Entropic
is implemented into the popular greybox fuzzer LibFuzzer which
is responsible for at least 12,000 bugs reported in security-critical
open-source projects and over 16,000 bugs reported in awidely-used
browser. After a successful independent evaluation of Entropic
by the company that develops LibFuzzer, our tool Entropic is
currently the subject of public code review9 to be integrated into
main-line LibFuzzer.

4.1 Overview of Entropic

A greybox fuzzer starts with a corpus of seed inputs and continu-
ously fuzzes these by applying randommutations. Generated inputs
that increase coverage are added to the corpus. The probability (i.e.,
frequency) with which a seed is chosen for fuzzing is called the

8The application of a mutation operator to a mutation location is merely an abstraction.
Concretely, it means to randomly choose from a large but fixed set of possible modifi-
cations to t . For instance, the application of multiple concrete mutation operators can
still be considered as the application of one abstract operator.
9Recall that the ESEC/FSE chairs advised us to blind the name of our tool, the name
of the baseline tool, and the name of the company that is developing LibFuzzer. To
understand our choice of baselines in the experiments, we should also mention that
Entropic is not developed or built on top of the popular AFL greybox fuzzer.

974

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

Algorithm 1 Entropic Algorithm.

Input: Program P, Initial Seed Corpus C
1: while ¬Timeout() do

2: for all t ∈ C. assignEnergy(t) // power schedule

3: total =
∑
t ∈C t .energy // normalizing constant

4: for all t ∈ C. t .energy =
t .energy
total

// normalized energy

5: t = sample t from C with probability t .energy
6: t ′ =Mutate(t) // fuzzing

7: if P(t ′) crashes then return crashing seed t ′

8: else if P(t ′) increases coverage then add t ′ to C

9: for all covered elements i ∈ P exercised by t ′ do
10: Y ti = Y

t
i + 1 // local incidence freq.

11: end for

12: end while

return Augmented Seed Corpus C

seed’s energy. The procedure that assigns energy to a seed is called
the fuzzer’s power schedule. For instance, LibFuzzer’s standard
schedule assigns more energy to seeds that were found later in the
fuzzing campaign. It is this power schedule that we modify.

Algorithm 1 shows how greybox fuzzing is implemented in Lib-

Fuzzer; our changes for Entropic are shown as green boxes. In
a continuous loop, the fuzzer samples a seed t ∈ C from a distri-
bution that is given by the seeds’ normalized energy. This energy
is computed using assignEnergy which implements one of our
information-theoretic power schedules. The seed t is then mutated
using random bit flips and other mutation operators to generate
an input t ′. If the execution crashes or violates the fuzzer security
policy, enacted by limits on execution time, memory usage, or sani-
tizers [36], t ′ is returned as crashing input and LibFuzzer stops. If
the execution increases coverage, t ′ is added to the corpus. We call
the number of inputs generated by fuzzing a seed t ∈ C and that
belong to species Di as local incidence frequency Y ti .

4.2 Entropy-Based Power Schedule

Our entropy-based schedule assigns more energy to seeds that elicit
more information about the program’s species. In other words, the
fuzzer spends more time fuzzing seeds that lead to more efficient
discovery of new behaviors. The amount of information about the
species in the neighborhood of a seed t that we expect for each
generated test input is measured using the seed’s local entropy H t .

The entropy-based power schedule is inspired by Active SLAM
[11, 39], a problem in robot mapping: An autonomous robot is
placed in an unknown terrain; the objective is to learn the map of
the terrain as quickly as possible. General approaches approximate
Shannon’s entropy of the map under hypothetical actions [9, 11].
The next move is chosen such that the reduction in uncertainty is
maximized. Similarly, our schedule chooses the next seed such that
the information about the program’s species is maximized.

4.2.1 Improved Estimator. During our experiments, we quickly
noticed that themaximum likelihood estimator ĤMLE in Equation 15
cannot be used. A new seed t that has never been fuzzed will always
be assigned zero energy Ĥ t

MLE = 0. Hence, it would never be chosen
for fuzzing and forever remain with zero energy. We experimented

−10.0%

0.0%

10.0%

1 2 3 4 5 6

Time (in h)

E
s
ti
m

a
to

r
B

ia
s

estimator

Entropy (LAP)

Entropy (MLE)

Figure 4: Mean estimator bias over time. We monitored es-

timates for the same seed t over 6h across 20 runs. Estima-

tor bias is the difference between the mean estimate and the

true valueH t divided by the true valueH t , whereH t is the av-

erage of both mean estimates at 6 hours into the campaign.

with a screening phase to compute a rough estimate. Each new seed
was first fuzzed for a fixed number of times. However, we found
that too much energy was wasted gaining statistical power that
could have otherwise been spent discovering more species.

To overcome this challenge we took a Bayesian approach. We
know that entropy is maximal when all probabilities are equal. For a
new seed t , we assume an uninformative prior for the probabilities
pti , i.e., p

t
1
= . . . = pt

S
, where pti is the probability that fuzzing t

generates an input that belongs to species Di . With each input
that is generated by fuzzing t , the probabilities are incrementally
updated. The posterior is a Beta distribution over pti . The estimate
p̂ti of pti is thus the mean of this beta distribution which is also
known as the Laplace estimator or add-one smoothing,

p̂ti =
Y ti + 1

Sд +
∑S
j=1 Y

t
j

(18)

where Sд = S(n) is the number of globally discovered species.

Thus, we define the improved entropy estimator Ĥ t
LAP (LAP) as

Ĥ t
LAP = log

©­«
Sд +

S∑
j=1

Yj
ª®¬
−

∑S
i=1(Yi + 1) log(Yi + 1)

Sд +
∑S
j=1 Yj

(19)

Figure 4 illustrates the main idea. Both estimators are nearly
unbiased from two hours onwards. In other words, they are within
1% from the true value, i.e., Ĥ t

X
∈ H t ± 1%.10 In the beginning, the

MLE is negatively biased and approaches the true value from below
while the LAP is positively biased and approaches the true value
from above. Both estimators robustly estimate the same quantity,
but only LAP assigns high energy when seed t has not been fuzzed
enough for an accurate estimate of the seeds information H t .

4.2.2 Measuring Information Only About Rare Species. During our
initial experiments, we also noticed that the entropy estimates for
different seeds were almost the same. We found that the reason is
a small number of very abundant species which have a huge im-
pact on the entropy estimate. There are some abundant species to
which each and every generated input belongs. Hence, we defined
a global abundance threshold θ and only maintain local incidence

10In contrast to global entropy H , local entropy H t is not subject to any adaptive bias;
see Section 3.6.

975

Boosting Fuzzer Efficiency: An Information Theoretic Perspective ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

frequencies Y ti of globally rare species Di that have a global inci-
dence frequency Yi ≤ θ . In Section 5, we report on the sensitivity
of the boosting technique on the abundance threshold θ .

5 EXPERIMENTAL EVALUATION

5.1 Research Questions

Our main hypothesis is that increasing information per generated
input increases fuzzer efficiency. To evaluate our hypothesis, we
implemented Entropic and ask the following research questions.

RQ.1 What is the empirical coverage improvement over the baseline?

RQ.2 How much faster are bugs detected compared to the baseline?

RQ.3 How does the choice of abundance threshold θ influence the

performance of our technique?

RQ.4 What is the cost of maintaining incidence frequencies?

5.2 Setup and Infrastructure

5.2.1 Implementation and Baseline. We implemented our entropy-
based power schedule into LibFuzzer (363 lines of change) and call
our extension as Entropic. LibFuzzer is a state-of-the-art vulnera-
bility discovery tool developed at [blinded] which has found almost
30k bugs in hundreds of closed- and open-source projects.

As a coverage-based greybox fuzzer (see Alg. 1), LibFuzzer seeks
tomaximize code coverage. Hence, our species is a coverage element,
called feature. A feature is a combination of branch covered and
hit count. For instance, two inputs (exercising the same branches)
have a different feature set if one exercises a branch more often.
Hence, feature coverage subsumes branch coverage. In contrast to
LibFuzzer, Entropic also maintains the local and global incidence
frequencies for each feature. We study the performance hit in RQ4.

LibFuzzer’s original power schedule assigns more energy to
seeds that have been added later in the fuzzing campaign. Entropic
implements our entropy-based power schedule (Sec. 4.2) which is
parameterized by the abundance threshold θ . We investigate the
impact of the choice of θ in RQ3.

⋆ Our extension Entropic has been independently evaluated by

the company that is developing LibFuzzer and was found to improve

on LibFuzzer with statistical significance. Entropic was invited for

integration into the main-line LibFuzzer and is currently subject to

public code review. Once integrated, Entropic is poised to run on more

than 25,000 machines fuzzing hundreds of security-critical software

systems simultaneously and continuously.

5.2.2 Benchmark Subjects. We compare Entropic with LibFuzzer

on 2 benchmarks containing 250+ open-source programs used in
many different domains, including browsers. We conducted almost
1,000 one-hour fuzzing campaigns and 2,000 six-hour campaigns to
generate almost two CPU years worth of data.

FTS [35] (12 programs, 1.2M LoC, 1 hour, 40 repetitions) is a stan-
dard set of real-world programs to evaluate fuzzer performance. The
subjects are widely-used implementations of file parsers, protocols,
and data bases (e.g., libpng, openssl, and sqlite), amongst others.
Each subject contains at least one known vulnerability (CVE), some
of which require weeks to be found. The Fuzzer Test Suite (FTS)
allows to compare the coverage achieved as well as the time to
find the first crash on the provided subjects. There are originally
25 subjects, but we removed those programs where more than 15%

entropy *0.74*

entropy *0.64*

entropy *0.71*

entropy *0.68*

entropy *0.98*

entropy *0.98*

entropy *0.84*

entropy *0.82*

entropy *0.87*

entropy *0.63*

entropy *0.82*

entropy *0.86*

sqlite−2016−11−14 vorbis−2017−12−11 wpantund−2018−02−27

openssl−1.1.0c−x509 openthread−2018−02−27−ip6 openthread−2018−02−27−radio

lcms−2017−03−21 libjpeg−turbo−07−2017 libpng−1.2.56

freetype2−2017 guetzli−2017−3−30 harfbuzz−1.3.2

0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

0

2500

5000

7500

0

100

200

300

400

0

500

1000

1500

2000

0

2500

5000

7500

10000

0

250

500

750

1000

1250

0

300

600

900

1200

0

500

1000

0

200

400

600

0

3000

6000

9000

0

200

400

600

0

500

1000

1500

0

300

600

900

Time (in minutes)

N
u

m
b

e
r

o
f

F
e

a
tu

re
s

schedule original entropy

Figure 5: Mean coverage in a 60 minute fuzzing campaign

(12 subjects × 2 schedules × 40 runs × 1 hour ≈ 40 CPU days).

The dashed, vertical lines showwhenEntropic achieves the

same coverage as LibFuzzer in 1 hour. The values at the bot-

tom right give the Vargha-Delaney effect size Â12.

of runs crash (leaving 12 programs with 1.2M LoC). As LibFuzzer
aborts when the first crash is found, the coverage results for those
subjects would be unreliable. We set a 8GB memory limit and ran
LibFuzzer for 1 hour. To gain statistical power, we repeated each
experiment 40 times. This required 40 CPU days.

OSS-Fuzz [29] (263 programs, 58.3M LoC, 6 hours, 4 repetitions)
is an open-source fuzzing platform developed by Google for the
large-scale continuous fuzzing of security-critical software. At the
time of writing OSS-Fuzz featured 1,326 executable programs in
176 open-source projects. We selected 263 programs totaling 58.3
million lines of code by choosing subjects that did not crash or reach
the saturation point in the first few minutes and that generated
more than 1,000 executions per second. Even for the chosen subjects,
we noticed that the initial seed corpora provided by the project
are often for saturation: Feature discovery has effectively stopped
shortly after the beginning of the campaign. It does not give much
room for further discovery. Hence, we removed all initial seed
corporas. We ran LibFuzzer for all programs for 6 hours and, given
the large number of subjects, repeated each experiment 4 times.
This required a total of 526 CPU days.

976

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

5.2.3 Computational Resources. All experiments for FTS were con-
ducted on a machine with Intel(R) Xeon(R) Platinum 8170 2.10GHz
CPUs with 104 cores and 126GB of main memory. All experiments
for OSS-Fuzz were conducted on a machine with Intel(R) Xeon(R)
CPU E5-2699 v4 2.20GHz with a total of 88 cores and 504GB of main
memory. To ensure a fair comparison, we always ran all schedules
simultaneously (same workload), each schedule was bound to one
(hyperthread) core, and 20% of cores were left unused to avoid
interference. In total our experiments took more than 2 CPU years

which amounts to more than 2 weeks of wall clock time.

5.2.4 Setup for Figures 3 and 4. Throughout the paper, we reported
on the results of small experiments. In all cases when not otherwise
specified, we used LibFuzzer with the original power schedule to
fuzz the LibPNG project from the fuzzer-test-suite (FTS) started
with a single seed input. For Figure 3, we conducted 10 runs of 20
hours using LibFuzzer both as blackbox and as greybox fuzzer. In
blackbox mode, no seeds are added to the corpus. For Figure 4, we
conducted 20 runs of 6 hours and monitored the single seed input
that we started LibFuzzer with. We printed all four estimates in
regular intervals.

RQ1.1 Code Coverage on FTS

⋆ Empirical results confirm our hypothesis that increasing the average

information each generated input reveals about the program’s species

increases the rate at which new species are discovered. By choosing

the seed that reveals more information, efficiency is improved.

Figure 5 shows the mean coverage over time and the Vargha-
Delaney [3] effect size Â12. Values above 0.56, 0.63, 0.71 indicate
a small, medium, and large effect size, respectively. More intu-
itively, the values indicate how much more likely it is for an En-

tropic run to cover more features than a LibFuzzer run (or less
likely if under 0.5). Values in stars (*Â12∗) indicate statistical sig-
nificance (Wilcoxon rank-sum test; p < 0.05). For instance, for
vorbis-2017-12-11 Entropic (with our entropy-based schedule)
covers about 700 features in under 15 minutes while LibFuzzer
(with the original schedule) takes one hour.

Entropic substantially outperforms LibFuzzer within the one-
hour time budget for 9 of 12 subjects. For two out of three cases
where the Â12 effect size is considered medium, the mean difference
in feature coverage is substantial (30% and 80% increase for libpng
and openssl-1.1.0c, resp.). In almost all cases, Entropic is more than
twice as fast (2x) as LibFuzzer. The same coverage that LibFuzzer
achieves in one hour, Entropic can achieve in less than 30 minutes.
All differences are statistically significant. The coverage trajectories
seem to indicate that the benefit of our entropy schedule becomes
evenmore pronounced for longer campaigns.We increase campaign
length to 6h for our experiments with OSS-Fuzz (RQ2).

RQ1.2 Large Scale Validation on OSS-Fuzz

⋆ Results for 263 open-source C/C++ projects validate our empirical

findings. Entropic generally achieves more coverage than LibFuzzer.

The coverage increase is larger than 10% for a quarter of programs. En-

tropic is more than twice as fast as LibFuzzer for half the programs.

The efficiency boost increases with the length of the campaign.

1%

10%

100%
200%

Subjects (in %)

100%90%80%70%60%50%40%30%20%10%0%

−1%

−10%

−100%

(a)Mean coverage increase. For X% of subjects, Entropic achieves at least Y%
more coverage than LibFuzzer.

0 66 132 198 264

0

1

2

3

4

5

6

0% 25% 50% 75% 100%

Number of Subjects

Subjects (in %)

T
im

e
 (

in
 h

o
u

rs
)

(b) Time to Coverage. For X% of subjects, Entropic achieves the same coverage in
Y hours, that LibFuzzer achieves in 6 hours (solid line).

40.0%

60.0%

80.0%

1 3 10 30 100 360

Time (in min)

P
ro

p
o
rt

io
n
 o

f
'W

in
s
'

(c) Entropic gets better at achieving coverage. After X seconds of fuzzing,
Entropic achieves more coverage than LibFuzzer for Y% of the 263 subjects.

Figure 6: OSS-Fuzz coverage results (263 subjects × 2 sched-

ules × 4 runs × 6 hours ≈ 1.5 CPU years).

Figure 6.(a) shows the mean coverage increase of Entropic over
LibFuzzer on a logarithmic scale over all 263 subjects. The dashed
line represents the coverage increase of LibFuzzer over Entropic
for the cases when LibFuzzer achieves more coverage. We can see
that Entropic achieves more coverage than LibFuzzer after six
hours of fuzzing for about 77% of subjects. Entropic covers at least
10% more features than LibFuzzer for about 25% of subjects. We
investigated more closely the 23% of the subjects where Entropic
achieves less coverage. First, for half of them, the coverage differ-
ence was marginal (less than 2%). Second, these subjects were much
larger (twice the number of branches on average). As we will see in
RQ4 that the performance overhead incurred by Entropic grows
linearly with the number of branches.

Figure 6.(b) shows how much faster Entropic is in achieving the
coverage that LibFuzzer achieves in six hours. Again, the dashed
line shows the inverse when LibFuzzer achieves more coverage at
the six hour mark. We can see that Entropic achieves the same
coverage twice as fast for about 50% of subjects and four times as
fast for 25% of subjects. More specifically, Entropic achieves the
same coverage in 1.5h as LibFuzzer achieves in 6h for 66 subjects.

977

Boosting Fuzzer Efficiency: An Information Theoretic Perspective ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

0

2

4

6

0.00% 1.00% 2.00% 3.00% 4.00%

Percentage of Runs

T
im

e
 t

o
 E

rr
o

r
(i
n

 h
)

Figure 7: OSS-Fuzz crash Time-To-Error results (≈ 1.5 CPU

years). X% of runs crashed in Y hours or less. Entropic

(dashed) and LibFuzzer (solid). Lower is better.

Figure 6.(c) shows the proportion of subjects where Entropic
achieves more coverage than LibFuzzer (i.e., wins) over time. Both
fuzzers break even at about 10 minutes. After 30 minutes, Entropic
already wins for 64% of subjects, until at 6 hours, Entropic wins
for about 77% of subjects. We interpret this result as Entropic
becoming more effective at boosting LibFuzzer as saturation is
being approached. In the beginning of the campaign, almost every
new input leads to species discovery. Later in the fuzzing campaign,
it becomesmore important to choose high-entropic seeds. Moreover,
estimator bias is reduced when more inputs have been generated.

RQ2. Crash Detection

⋆ In our experiments with OSS-Fuzz, Entropic found most crashes

faster than LibFuzzer. Some of these crashes were found only by

Entropic. These crashes are potential zero-day vulnerabilities in

widely-used security-critical open-source libraries.

Figure 7 shows the time it takes to find each crash as an aggre-
gate statistic in ascending order over all crashes that have been
discovered in any of the four runs of all subjects for both fuzzers.
For instance, for 2.5% of 263 · 4 runs, Entropic finds a crash in 1.5
hours or less while LibFuzzer takes 2 hours or less. The crashes are
real and potentially exploitable. All subjects are security-critical
and widely used. Google maintains a responsible disclosure policy
for bugs found by OSS-Fuzz. This gives maintainers some time to
patch the crash before the bug report is made public. Three bugs
are discovered only by Entropic.

RQ3. Sensitivity Analysis

⋆ Overall, Entropic performs best for an abundance threshold of

θ = 4,096 (i.e., 0x1000) for the FTS subjects.

We analyze the sensitivity of fuzzer performance on the abun-
dance threshold θ . The abundance threshold specifies an upper
limit on the global incidence frequencies Yi below which a species
is considered as łrarež. Only incidence frequencies of rare species
are used when computing a seed’s energy (see Section 4). This over-
comes the challenge of overly abundant species dominating the
energy values, a challenge we observed in our initial experiments.
In order to study the behavior of Entropic schedules, we vary the
abundance threshold θ on a logarithmic scale. To gain statistical
power, all experiments of one (1) hour are repeated 40 times.

Original Entropy Schedule
Max. abundance 0x100 0x1000 0x10000

µ µ Â12 µ Â12 µ Â12

freetype2-2017 9,932.8 10,818.2 0.67 11,219.1 0.73 11,018.1 0.71
guetzli-2017-3-30 1,151.0 1,245.5 0.97 1,189.5 0.98 1,183.7 0.96

harfbuzz-1.3.2 8,639.9 9,095.6 0.83 9,036.2 0.82 8,972.5 0.82
lcms-2017-03-21 455.2 461.6 0.52 563.8 0.66 518.7 0.59

libjpeg-turbo-07-2017 1,067.2 1,117.0 0.72 1,174.8 0.97 1,157.2 0.96
libpng-1.2.56 300.8 328.1 0.51 289.4 0.41 358.9 0.56

openssl-1.1.0c-x509 1,338.0 1,249.1 0.42 1,724.8 0.65 1,744.0 0.68
ot-2018-02-27-ip6 1,240.9 1,085.3 0.32 1,306.3 0.79 1,243.3 0.45

ot-2018-02-27-radio 1,994.8 1,988.0 0.50 2,100.2 0.76 2,015.7 0.70
sqlite-2016-11-14 1,092.7 1,073.3 0.16 1,084.2 0.69 1,073.0 0.56
vorbis-2017-12-11 687.9 740.0 0.89 749.5 0.90 721.9 0.80

wpantund-2018-02-27 9,323.9 9,927.1 0.86 9,905.0 0.85 9,936.8 0.86

Figure 8: Sensitivity to abundance threshold which consti-

tutes łrarež feature (12 subjects x 3 abundance thresholds

x 40 runs x 1h each = 60 CPU days). Showing mean cover-

age (µ) and Vargha-Delaney effect size (Â12). Bold values in-

dicate statistical significance.

Figure 8 shows the mean coverage for LibFuzzer (original) and
Entropic as well as the Vargha-Delaney effect size. The values in
bold indicate statistical significance of the observed difference. A
closer look at the table reveals that often the best performing thresh-
old value appears to be subject-specific. This opens the opportunity
for research on hyper-parameter tuning.

RQ4. Performance Overhead

⋆ There is a 2% median overhead across the 12 FTS subjects for main-

taining incidence frequencies when compared to the entire fuzzing

process. There is a 12% median overhead when compared to the time

spent only in the fuzzer (and not in the subject).

0.00

0.25

0.50

0.75

1.00

Subjects

P
ro

p
o

rt
io

n
 o

f
E

xe
c
u

ti
o

n

Frequency Updates Fuzzer Maintenance Subject Execution

Figure 9: Entropic instrumentation overhead.

Figure 9 shows the proportion of the time that Entropic spends
in the different phases of the fuzzing process. In all cases, the most
time is spent executing the subject (bright gray). Entropic exe-
cutes the subject between 10,000 and 100,000 times per second. The
remainder of the time is spent in the fuzzer, where the darker gray
bars represent functions that LibFuzzer normally performs while
the black bars represent the overhead brought by Entropic.

The maintenance of incidence frequencies takes more time away
from the fuzzing process than we expected, given the substantial
performance gains discussed in RQ1 and RQ2. Note that Entropic
outperforms LibFuzzer despite this additional overhead. Entropic
is a prototype. We are confident that there are plenty of opportuni-
ties to reduce this overhead to further boost Entropic’s efficiency.

978

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

6 THREATS TO VALIDITY

Like for any empirical study, there are threats to the validity of our
results. We adopted several strategies to increase internal validity.
In order to put no fuzzer at a disadvantage, we used default config-
urations, provided the exact same starting condition, and executed
each technique several times and under the same workload. The
time when the fuzzer crashes identifies unambiguously when a bug
is found. To define species in our experiments, we use the natural
measure of progress for LibFuzzer and its extension Entropic. To
mitigate threats to construct validity such as bugs in Entropic or
observed performance differences that are not due to our discussed
improvements, we extended the baseline LibFuzzer using a readily
comprehensible 363 lines of code. We adopted several strategies to
increase external validity. We repeated all experiments from which
we derive empirical statements (RQ1, RQ2, RQ4) at least 40 times.
To increase the generality of our results, we conducted experiments
on OSS-Fuzz totaling 263 C/C++ programs and 58.3 million LoC.

For a sound statistical analysis, we followed the recommenda-
tions of Arcuri et al. [3] and Klees et al. [22] to the extent to which
our computational resources permitted.

7 RELATED WORK

We begin with an overview of existing approaches to increase the
efficiency of greybox fuzzing, and continue with earlier applications
of information theory to software testing and debugging.

Fuzzing has recently gained substantial academic interest [4, 12,
14, 17, 19, 20, 30ś34, 44]. We refer to a recent survey [26] for a com-
prehensive overview. Woo et al. [40] model blackbox fuzzing as a
multi-armed bandit problem, where the fuzzer assigns more energy
to seeds that have previously been observed to crash. PerfFuzz [23]
assigns more energy to seeds that maximize execution counts to
discover algorithmic complexity vulnerabilities. FairFuzz [24] and
AFLFast [8] are greybox fuzzers that assign more energy to seeds
that exercise low-probability paths or branches to discover more
low-probability paths or branches. In contrast, Entropic computes
the energy of a seed t based on the discovery probabilities of species
in the neighborhood of t rather than of t ’s species itself. Moreover,
Entropic is motivated by our key insight that maximizing infor-
mation each input reveals about a program’s behaviors increases
the fuzzer’s efficiency.

Information theory has previously found application in software

test selection. Given a test suite T and the probability p(t) that test
case t ∈ T fails, one may seek to minimize the number of test cases
t ∈ T to execute while maximizing the information that executing
t would reveal about the program’s correctness. Yang et al. [41, 42]
give several strategies to select a test case t ′ ∈ T (or a size-limited
set of test casesT ′ ⊆ T) such thatÐif we were to execute t ′ (orT ′)Ð
the uncertainty about test case failure (i.e., entropy) is minimized.
Unlike our model, the model of Yang et al. requires to specify for
each input the expected output as well as the probability of failure
(i.e., the observed not matching the expected output). Hence, Yang’s
model is practical only in the context of test selection, but not in
the context of automated test generation. Similarly, Feldt et al. [15]
propose an information-theoretic approach to measure the distance
between test cases, based on Kolmogorov complexity, and uses
it to maximize diversity of selected tests. Although their idea is

complementary to ours, it is computationally too expensive to be
directly applied to test generation. Finally, by considering fuzzing as
a random process in a multi-dimensional space, Ankou [27] enables
the detection of different combination in fuzzers’ fitness function.

Information theory has also found application in software fault

localization. Given a failing test suiteT , suppose we want to localize
the faulty statement as quickly as possible. Yoo, Harmann, and Clark
[43] discuss an approach to execute test cases in the order of how
much information they reveal about the fault location. Specifically,
test casesÐwhich most reduce the uncertainty that a statement is
the fault locationÐwill be executed first. Campos et al. [10] propose
a search-based test generation technique with a fitness function
that maximizes the information about the fault location. In contrast,
our objective is to quantify and maximize the efficiency of the
test generation process in learning about the program’s behaviors
(including whether or not it contains faults).

Bug finding efficiency and scalability are important properties of
a fuzzing campaign. Böhme and Paul [7] conducted a probabilistic
analysis of the efficiency of blackbox versus whitebox fuzzing, and
provide concrete bounds on the time a whitebox fuzzer can take
per test input in order to remain more efficient than a blackbox
fuzzer. Böhme and Falk [6] empirically investigate the scalability
of non-deterministic black- and greybox fuzzing and postulate an
exponential cost of vulnerability discovery. Specifically, they make
the following counter-intuitive observation: Finding the same bugs
linearly faster requires linearly more machines. Yet, finding linearly
more bugs in the same time requires exponentially more machines.

Alshahwan and Harman [1] introduced the concept of łoutput
uniquenessž as (blackbox) coverage criterion, where one test suite is
considered asmore effective than another if it elicits a larger number
of unique program outputs. This blackbox criterion turns out to be
similarly effective as whitebox criteria (such as code coverage) in
assessing test suite effectiveness. In our conceptual framework, a
unique output might be considered as a species. Entropy could be
used as blackbox measure of the efficiency of discovering different
unqiue outputs during testing.

8 CONCLUSION

In this paper, we presented Entropic, the first greybox fuzzer that
leverages Shannon’s entropy for scheduling seeds. The key intuition
behind our approach is to prefer seeds that reveal more informa-
tion about the program under test. Our extensive empirical study
confirms that our information-theoretic approach indeed helps in
boosting fuzzing performance in terms of both code coverage and
bug finding ability.

Information theory. We formally link entropy (as measure
of information) to fuzzer efficiency, develop estimators and boost-
ing techniques for greybox fuzzing that maximize information,
and empirically investigate the resulting improvement of fuzzer
efficiency. We extend the STADS statistical framework [5] to in-
corporate mutation-based blackbox fuzzing where a new input is
generated by modifying a seed input. We hope that our information-
theoretic perspective provides a general framework to think about
efficiency in software testing irrespective of the chosen measure of
effectiveness (i.e., independent of the coverage criterion).

979

Boosting Fuzzer Efficiency: An Information Theoretic Perspective ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Practical Impact. Our implementation of Entropic has been
incorporated into LibFuzzer, one of the most popular industrial
fuzzers. At the time of writing, Entropic was enabled for 50% of
fuzzing campaigns that are run on more than 25,000 machines for
finding bugs and security vulnerabilities in over 350 open-source
projects, including Google Chrome. After several additional im-
provements, Entropic now outperforms all other fuzzers available
on FuzzBench [28], Google’s fuzzer benchmarking platform. This
result highlights the practical impact of our approach.

Open science and reproducibility. The practical impact of
Entropic is a testament to the effectiveness of open science, open
source, and open discourse. There is a growing number of authors
that publicly release their tools and artifacts. Conferences are adopt-
ing artifact evaluation committees to support reproducibility [21],
but, as always, more can be done to accommodate reproducibility
as first-class citizens into our peer-reviewing process. We strongly
believe that openness is a reasonable pathway to foster rapid and
sound advances in the field and to enable a meaningful engagement
between industry and academia.

• We make our scripts and experimental data publicly available
at https://doi.org/10.6084/m9.figshare.12415622.v2

• We provide detailed instructions to reproduce our results at
https://github.com/researchart/fse20

• Our results for Entropic have been independently reproduced
at https://www.fuzzbench.com/reports/2020-03-04.

APPENDIX: PROOF OF THEOREM 1

In our model where each input can belong to one or more species,
let ∆(n) be the expected number of new species the fuzzer discovers
with the (n + 1)-th generated test input. We prove

H = log(c) +
∞∑
n=1

∆(n)

cn
where c =

S∑
j=1

pj . (20)

Proof. Let c =
∑S
j=1 pj . We prove by Taylor expansion and

Fubini’s theorem that

H = log(c) −

∑S
i=1 pi log(pi)

c
[by Eqn. (12)] (21)

= log(c) −

∑S
i=1 pi log(1 − (1 − pi))

c
(22)

= log(c) −

∑S
i=1 pi

[
−

∑∞
n=1

(1−pi)n

n

]
c

[by Taylor exp.] (23)

= log(c) +

∑∞
n=1

1
n

∑S
i=1 pi (1 − pi)

n

c
[by Fubini] (24)

= log
©­«
S∑
j=1

pj
ª®¬
+

∞∑
n=1

∆(n)

n
∑S
j=1 pj

[by Ref. [7]] (25)

■

APPENDIX: DERIVATION OF EQUATION (12)

When it is possible that
∑S
i=1 pi ≥ 1, we normalize the probabilities

and compute H = −
∑S
i=1 p

′
i log(p

′
i) such that p′i = pi/

∑S
j=1 pj .

H = −

S∑
i=1

p′i log(p
′
i) = −

S∑
i=1

pi∑S
j=1 pj

log

(
pi∑S
j=1 pj

)
(26)

= −


S∑
i=1

pi∑S
j=1 pj

©­«
log(pi) − log(

S∑
j=1

pj)
ª®¬


(27)

= −

∑S
i=1 pi log(pi)∑S

j=1 pj
+


∑S
i=1 pi∑S
j=1 pj

log(
S∑
j=1

pj)


(28)

since
S∑
j=1

pj is constant.

= log
©­«
S∑
j=1

pj
ª®¬
−

∑S
i=1 pi log(pi)∑S

j=1 pj
(29)

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was partly funded by the Australian Research Coun-
cil (ARC) through a Discovery Early Career Researcher Award
(DE190100046). This research was supported by use of the Nectar
Research Cloud, a collaborative Australian research platform sup-
ported by the NCRIS-funded Australian Research Data Commons
(ARDC). This work was partly supported by Institute of Informa-
tion & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2019-0-01697,
Development of Automated Vulnerability Discovery Technologies
for Blockchain Platform Security).

REFERENCES
[1] Nadia Alshahwan and Mark Harman. 2014. Coverage and Fault Detection of the

Output-Uniqueness Test Selection Criteria. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis (ISSTA 2014). 181âĂŞ192. https:
//doi.org/10.1145/2610384.2610413

[2] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tramontana,
Emily Kowalczyk, and Atif M. Memon. 2015. Exploiting the Saturation Effect
in Automatic Random Testing of Android Applications. In Proceedings of the
Second ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft ’15). 33ś43.

[3] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In Proceedings
of the 33rd International Conference on Software Engineering (ICSE ’11). 1ś10.

[4] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.
IJON: Exploring Deep State Spaces via Fuzzing. In IEEE Symposium on Security
and Privacy (Oakland).

[5] Marcel Böhme. 2018. STADS: Software Testing as Species Discovery. ACM
Transactions on Software Engineering and Methodology 27, 2, Article 7 (June 2018),
52 pages. https://doi.org/10.1145/3210309

[6] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of
Vulnerability Discovery. In Proceedings of the 14th Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE). 1ś12. https://doi.org/10.1145/3368089.
3409729

[7] Marcel Böhme and Soumya Paul. 2016. A Probabilistic Analysis of the Efficiency
of Automated Software Testing. IEEE Transactions on Software Engineering 42, 4
(April 2016), 345ś360. https://doi.org/10.1109/TSE.2015.2487274

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering (2017), 1ś18.

980

https://github.com/llvm/llvm-project/commit/e2e38fca64e49d684de0b100437fe2f227f8fcdd
https://github.com/google/clusterfuzz/commit/3dc220124ca652e6cc065309bb751cee80813c09
https://github.com/google/fuzzbench/issues/249#issuecomment-691614316
https://doi.org/10.6084/m9.figshare.12415622.v2
https://github.com/researchart/fse20/tree/master/submissions/available/entropic
https://www.fuzzbench.com/reports/2020-03-04/index.html
https://doi.org/10.1145/2610384.2610413
https://doi.org/10.1145/2610384.2610413
https://doi.org/10.1145/3210309
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1109/TSE.2015.2487274

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

[9] Mitch Bryson and Salah Sukkarieh. 2008. Observability Analysis and Active
Control for Airborne SLAM. IEEE Trans. Aerospace Electron. Systems 44, 1 (January
2008), 261ś280.

[10] José Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. 2013. Entropy-
based Test Generation for Improved Fault Localization. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’13).
257ś267.

[11] Henry Carrillo, Ian Reid, and José A. Castellanos. 2012. On the Comparison of
Uncertainty Criteria for Active SLAM. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’12). 2080ś2087.

[12] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In Proceedings of the IEEE Symposium on Security and Privacy
(SP ’15). 725ś741.

[13] Anne Chao, Y. T. Wang, and Lou Jost. 2013. Entropy and the species accumulation
curve: a novel entropy estimator via discovery rates of new species. Methods in
Ecology and Evolution 4, 11 (2013), 1091ś1100.

[14] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS ’18). ACM, New York, NY, USA, 2095ś2108. https://doi.org/10.1145/3243734.
3243849

[15] R. Feldt, S. Poulding, D. Clark, and S. Yoo. 2016. Test Set Diameter: Quantifying the
Diversity of Sets of Test Cases. In Proceedings of the IEEE International Conference
on Software Testing, Verification and Validation. 223ś233.

[16] Antonio Filieri, Corina S. Păsăreanu, andWillem Visser. 2013. Reliability Analysis
in Symbolic Pathfinder. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE ’13). 622ś631.

[17] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th
USENIX Workshop on Offensive Technologies (WOOT ’20). 1ś12.

[18] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic Sym-
bolic Execution. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA 2012). 166ś176.

[19] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS ’17). 2345ś2358.

[20] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.
In Proceedings of the Network and Distributed System Security Symposium (NDSS
’19).

[21] Ben Herrmann, Stefan Winter, and Janet Siegmund. 2020. Community Expec-
tations for Research Artifacts and Evaluation Processes. In Proceedings of the
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. (ESEC/FSE 2020). 1ś12. https://doi.org/10.
1145/3368089.3409767

[22] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS ’18). ACM, New York, NY, USA, 2123ś2138.

[23] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018).
254âĂŞ265. https://doi.org/10.1145/3213846.3213874

[24] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE 2018).
New York, NY, USA, 475âĂŞ485. https://doi.org/10.1145/3238147.3238176

[25] LibFuzzer. 2019. LibFuzzer: A library for coverage-guided fuzz testing. http:
//llvm.org/docs/LibFuzzer.html. (2019). Accessed: 2019-02-20.

[26] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
(2019). https://doi.org/10.1109/TSE.2019.2946563

[27] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding Grey-
box Fuzzing towards Combinatorial Difference. In Proceedings of the International
Conference on Software Engineering. 1024ś1036.

[28] Jonathan Metzmann, Abhishek Arya, and Lászl’o Szekeres. 2020. FuzzBench:
Fuzzer Benchmarking as a Service. https://security.googleblog.com/2020/03/
fuzzbench-fuzzer-benchmarking-as-service.html. (2020). Accessed: 2020-09-17.

[29] OSS-Fuzz. 2019. Continuous Fuzzing Platform. https://github.com/google/oss-
fuzz/tree/master/infra. (2019). Accessed: 2019-02-20.

[30] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2019).
New York, NY, USA, 329âĂŞ340. https://doi.org/10.1145/3293882.3330576

[31] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: A
Greybox Fuzzer for Network Protocols. In Proceedings of the 2020 IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST 2020).
460ś465. https://doi.org/10.1109/ICST46399.2020.00062

[32] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru R. Căciulescu,
and Abhik Roychoudhury. 2019. Smart Greybox Fuzzing. IEEE Transactions on
Software Engineering (2019), 1ś17.

[33] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the USENIX Security Symposium (SEC ’14). 861ś875.

[34] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. 2020. HYPER-CUBE: High-Dimensional Hypervisor Fuzzing. In 27th An-
nual Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020.

[35] Konstantin Serebryany. 2017. https://github.com/google/fuzzer-test-suite/blob/
master/engine-comparison/tutorial/abTestingTutorial.md. (2017). Accessed:
2019-02-20.

[36] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference (USENIX ATC
’12). 28ś28.

[37] Claude E. Shannon. 1948. AMathematical Theory of Communication. Bell System
Technical Journal 27 (1948).

[38] Elena Sherman, Matthew B. Dwyer, and Sebastian Elbaum. 2009. Saturation-based
Testing of Concurrent Programs. In Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC/FSE ’09). 53ś62.

[39] Sebastian Thrun. 2003. Exploring Artificial Intelligence in the New Millennium.
Chapter Robotic Mapping: A Survey, 1ś35.

[40] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling Black-box Mutational Fuzzing. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS ’13). 511ś522.

[41] Linmin Yang. 2011. Entropy and Software Systems: Towards an Information-
theoretic Foundation of Software Testing. Ph.D. Dissertation. Advisor(s) Dang,
Zhe and Fischer, Thomas R.

[42] Linmin Yang, Zhe Dang, and Thomas R. Fischer. 2011. Information gain of
black-box testing. Formal Aspects of Computing 23, 4 (01 Jul 2011), 513ś539.

[43] Shin Yoo, Mark Harman, and David Clark. 2013. Fault Localization Prioritization:
Comparing Information-theoretic and Coverage-based Approaches. ACM Trans-
actions on Software Engineering and Methodology 22, 3, Article 19 (July 2013),
29 pages.

[44] Michal Zalewski. 2019. AFL: American Fuzzy Lop Fuzzer. http://lcamtuf.
coredump.cx/afl/technical_details.txt. (2019). Accessed: 2019-02-20.

981

https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3368089.3409767
https://doi.org/10.1145/3368089.3409767
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3238147.3238176
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/TSE.2019.2946563
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://github.com/google/oss-fuzz/tree/master/infra
https://github.com/google/oss-fuzz/tree/master/infra
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1109/ICST46399.2020.00062
https://github.com/google/fuzzer-test-suite/blob/master/engine-comparison/tutorial/abTestingTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/engine-comparison/tutorial/abTestingTutorial.md
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Abstract
	1 Introduction
	2 A Probabilistic Framework For Blackbox Fuzzing
	2.1 Software Testing as Discovery of Species
	2.2 Mutation-Based Blackbox Fuzzing
	2.3 Assumptions

	3 An Information-Theoretic Measure of Fuzzer Efficiency
	3.1 Information Theory in a Nutshell
	3.2 If Each Input Belongs to Multiple Species
	3.3 The Local Entropy of a Seed
	3.4 Information-Theoretic Efficiency Measure
	3.5 Maximum Likelihood Estimator
	3.6 Tackling Adaptive Bias when Estimating the Global Entropy of a Greybox Fuzzer

	4 Information-Theoretic Boosting
	4.1 Overview of Entropic
	4.2 Entropy-Based Power Schedule

	5 Experimental Evaluation
	5.1 Research Questions
	5.2 Setup and Infrastructure

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

