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ABSTRACT

With the wide application and deployment of cloud computing

in enterprises, virtualization developers and security researchers

are paying more attention to cloud computing security. The core

component of cloud computing products is the hypervisor, which

is also known as the virtual machine monitor (VMM) that can

isolate multiple virtual machines in one host machine. However,

compromising the hypervisor can lead to virtual machine escape

and the elevation of privilege, allowing attackers to gain the permis-

sion of code execution in the host. Therefore, the security analysis

and vulnerability detection of the hypervisor are critical for cloud

computing enterprises. Importantly, virtual devices expose many

interfaces to a guest user for communication, making virtual de-

vices the most vulnerable part of a hypervisor. However, applying

fuzzing to the virtual devices of a hypervisor is challenging because

the data structures transferred by DMA are constructed in a nested

form according to protocol specifications. Failure to understand the

protocol of the virtual devices will make the fuzzing process stuck

in the initial fuzzing stage, resulting in inefficient fuzzing.

In this paper, we propose a new framework called V-Shuttle to

conduct hypervisor fuzzing, which performs scalable and semantics-

aware hypervisor fuzzing. To address the above challenges, we first

design a DMA redirection mechanism to significantly reduce the

manual efforts to reconstruct virtual devices’ protocol structures

and make the fuzzing environment setup automated and scalable.

Furthermore, we put forward a new fuzzing mutation scheduling
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mechanism called seedpool to make the virtual device fuzzing pro-

cess semantics-aware and speed up the fuzzing process to achieve

high coverage. Extensive evaluation on QEMU and VirtualBox, two

of the most popular hypervisor platforms among the world, shows

that V-Shuttle can efficiently reproduce existing vulnerabilities

and find new vulnerabilities. We further carried out a long-term

fuzzing campaign in QEMU/KVM and VirtualBox with V-Shuttle.

In total, we discovered 35 new bugs with 17 CVEs assigned.
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1 INTRODUCTION

Cloud computing becomes quite prevalent nowadays, as organiza-

tions and individual users prefer to deploy their applications on

top of the cloud computing infrastructure for its rapid and scalable

deployment ability. Major cloud service providers, such as Amazon

Web Services (AWS), Microsoft Azure, and Alibaba Cloud, continue

to grow with the increasing demand for cloud computing resources.

However, the popularity of cloud computing also leads to the secu-

rity concerns of the cloud computing software and hardware stack.

Famous PWN contests, such as Pwn2Own and Tianfu Cup [10, 11],

have the virtualization category that targets hypervisors, including

VMWare WorkStation/Esxi, QEMU/KVM, and VirtualBox. Virtual

https://doi.org/10.1145/3460120.3484811
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hardware devices used by guests are hardware peripherals emu-

lated in modern hypervisors that provide a virtual machine with

additional functionality. From the attacker’s perspective, the vir-

tual devices allow the attackers to write data to the host machine

from the guest system. This feature makes the virtual devices be-

come the most vulnerable attack surface of the hypervisor system

architecture. In the past few years, almost all attacks on the hyper-

visor were launched from virtual devices [28, 46, 54]. Hence, it is

critical to conduct security vetting of the virtual devices’ code to

avoid exposing vulnerabilities to attackers in advance. Toward this,

we need efficient and scalable techniques to identify the potential

vulnerabilities.

In practice, fuzzing has been proved an effective way to discover

bugs and vulnerabilities in modern software [5, 14, 16, 19, 25, 32, 49].

However, our observation is that applying fuzzing to hypervisor is

challenging, as the inherent hypervisor-specific challenges make

fuzzing ineffective. Typically, a hypervisor is designed to expose

interfaces to a guest system, such that guest users can drive the

virtual device to emulate its behavior. Most devices follow the com-

mon operation model, where the device states are first initialized

through MMIO, and then the complex data transfer process is com-

pleted through DMA, as shown in Figure 1. It is natural to write

random data into these interfaces by using fuzzing techniques, but

the data transferred by DMA is highly nested, which severely hin-

ders traditional fuzzing from expanding code coverage. Specifically,

the data structures defined in a device’s specification are often con-

structed as a tree, where each node contains a link pointer to the

next node. Certain DMA operations take a large size of the input

from the guest space, and they use a nested structure in the input

structures — i.e., a field member in one structure points to another

structure. From the perspective of random fuzzing, such a nested

structure is difficult to construct as it has to correctly guess the

semantics of the overall organization (hierarchically nested pattern)

and the internal semantics imposed in each node (i.e., a pointer

field pointing to another).

Considering that the security of hypervisor is critical, various

fuzzing tools have been proposed to detect bugs in a hypervi-

sor [9, 13, 20, 22, 31, 34, 43, 50, 51]. The state-of-the-art methods

include VDF [34], Hyper-Cube [50] and Nyx [51]. VDF is the first

hypervisor fuzzing framwork, which utilizes AFL to implement

a coverage-guided hypervisor fuzzing approach. Hyper-Cube de-

signs a multi-dimensional, platform-independent fuzzing method

based on a custom OS. Although Hyper-Cube does not apply the

coverage-guided fuzzing technology into its fuzzing process, it still

outperforms VDF due to its high-throughput design. However, both

of them share the same idea: they write a bunch of random val-

ues to the basic interface (MMIO, DMA, etc.). Further, they have

no knowledge of the protocol implementation of a virtual device -

how the data structures transferred via DMA are organized. Nyx

understands the protocol of the target device and builds structured

fuzzing based on user-supplied specifications. However, it requires

significant manual effort to create the template for a specification.

For example, the authors of Nyx spent about two days on the most

complex specification in their evaluation. Hence, Nyx does not

scale across different device implementations, as it requires manual

adaptation when customized for each new protocol. This is the

common disadvantage of structured fuzzing [14, 48, 59], as its effec-

tiveness heavily depends on the completeness of the nested form

of structures, which is normally written manually based on the

developers’ understanding of the protocol specification. Typically,

developers need to extract all types of basic data structures from

the device protocol, including the connection relationship between

basic structures, and the pointer offset in each data structure. Such

a labor-intensive process to apply structured fuzzing to hypervi-

sor is time-consuming and error-prone. As a result, existing fuzzing

approaches cannot effectively test virtual devices.

In order to tackle this challenge, we propose V-Shuttle,
1
- a

scalable and semantics-aware hypervisor fuzzing framework. Over-

all, we achieve a fully automatic fuzzing approach by decoupling

the nested structures and enabling type awareness. In particular,

we first intercept each access to a DMA object and redirect the

access from a pointer to our controlled fuzzed input, eliminating

the addressing of data structures by the hypervisor to make sure

each DMA request will be supplied with the fuzzed data. Then,

we perform fine-grained semantics-aware fuzzing by organizing

the structures of different DMA object types into different cate-

gories and using seedpool to maintain the seed queues of these

different categories. This method allows each DMA request to be

supplied with semantics-valid fuzzed data, which further improves

the efficiency of fuzzing.

We implemented V-Shuttle based on the well-known fuzzer

AFL. We first evaluate our system by running experiments on 16

QEMU devices and obtain the code coverage. As the evaluation

results show, V-Shuttle is truly scalable and automatic to explore

deep code in a hypervisor, which eliminates the manual efforts

to construct valid test cases according to specifications. Moreover,

V-Shuttle even outperforms traditional structure-aware fuzzing,

mainly because the process of manually understanding a speci-

fication is error-prone. Meanwhile, the semantics-aware fuzzing

mode of V-Shuttle, also brings substantial improvements. Com-

pared to state-of-the-art hypervisor fuzzers, V-Shuttle produces

higher code coverage in most cases than VDF, Hyper-Cube, and

Nyx. Regarding the capability of finding vulnerability, V-Shuttle

identifies 35 previously unknown vulnerabilities in two popular

hypervisors, out of which 17 new CVEs were assigned. We have re-

ported the discovered vulnerabilities to the respective vendors and

are working with them on fixing these vulnerabilities. Additionally,

we have also successfully implemented V-Shuttle to Ant Group, a

worldwide leading Internet company, which further demonstrates

the scalability of our framework. We hope that our tool will aid

developers in hardening the hypervisor, leading to better software

security.

The main contributions of this work are as follows.

• The Study on DMA: We systematically analyze the driver-

device interaction in virtual machine transaction, and study

why we should focus on the DMA-related part of code. Ad-

ditionally, we reveal that the data structures transferred via

DMA have nested features which will reduce the efficiency

of fuzzing.

1
V-SHUTTLE stands for V model shuttlecraft that we aim to shuttle/escape from the

guest virtual machine to host machine by fuzzing hypervisors.



• A Fuzzing Framework: We present the design and imple-

mentation of V-SHUTTLE, a scalable and semantics-aware

hypervisor fuzzing framework, which can automatically de-

couple nested structures and guide fuzzing to explore hard-

to-trigger code. To our knowledge, V-SHUTTLE is the first

hypervisor fuzzing framework that has an automatic and

deep understanding of the protocol implementations in de-

vices.

• Discovered Vulnerabilities: As part of our evaluation, we

discovered 35 previously unknown vulnerabilities with 17

CVEs assigned in QEMU and VirtualBox, two of the most

widely used hypervisors. We responsibly disclosed the rele-

vant details to the corresponding vendors.

• An Open-source Tool: We will open-source V-Shuttle
2
,

in order to facilitate further research on virtualization secu-

rity.

The rest of the paper is organized as follows. Section 2 presents

the background information with a motivating example. Section 3

describes V-Shuttle’s design, and Section 4 describes the imple-

mentation details. We show the evaluation results of our approach

in Section 5 and the deployment of V-Shuttle in Section 6. The

related research and limitation of V-Shuttle are discussed in Sec-

tion 7 and Section 8, respectively. Finally, we conclude in Section 9.

Host

Guest

MMIO Space                                       Memory Space

Command
Register

Base Address
Register

…

Guest Kernel Driver

① Access Register
through MMIO

② Copy Pre-allocated Buffer
in Guest through DMA

Command
Ring Buffer Data

③ Execute Transactions

Hypervisor

Figure 1: General workflow of the virtual machine transaction.

2 BACKGROUND AND MOTIVATION

We provide the necessary background information to understand

what are virtual devices of hypervisors, and how the driver-device

communication is handled. After that, we elaborate on the core

challenge of hypervisor fuzzing.

2.1 Virtual Devices of Hypervisors

Virtual devices used by guest users are hardware peripherals em-

ulated in modern hypervisors that provide a VM with additional

functionality. A virtual device acts as real hardware in a guest VM,

which means the drivers in a guest OS can drive a virtual device the

same as they do for a physical device. Modern hypervisors virtual-

ize nearly all the hardware such as graphics cards, storage devices,

2
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network cards, USB, etc. Each device’s protocol specification de-

fines a unique register-level hardware interface for communication

between the device and the operating system. Generally, virtualiza-

tion developers design virtual devices based on the specifications.

Because of the virtual device’s nature (virtual device emulation is at

the host level, and the guest can access virtual devices with arbitrary

data), they are typically the largest attack surface of hypervisors.

2.2 Driver-Device Interaction

Overall, a virtual device exposes three important interaction inter-

faces to guest adversaries: memory-mapped I/O (MMIO), Port I/O
(PIO), and direct memory access (DMA). Figure 1 illustrates a general

workflow of the virtual machine transaction. At the beginning of a

device’s execution, the guest driver usually writes data to MMIO or

PIO regions to make the device do some initialization work, such as

device state setup and address register initialization, which targets

the pre-allocated buffer in the guest. After the initialization stage

is done, the device turns to a state where the device is ready to

process data. The device starts doing some device-specific work (i.e.,

transferring USB data and sending network packets). The primary

interaction mechanism in this data processing stage is DMA, which

allows the device to transfer large and complex data with the guest.

Since the data processing part is the device’s main functionality

containing most code paths, this part is more likely to introduce

security risks than other parts.

To demonstrate that virtual devices of a hypervisor widely use

DMA, we did a statistic analysis on the percentage of devices in

QEMU that support DMA communication.We selected the fivemost

popular QEMU device categories (excluding some misc devices and

back-end devices) used in virtualization scenarios. We manually

analyze whether there is a DMA transmission mechanism in the

device. The results are shown in Table 1, which shows that 72.5%

of the devices support DMA. Except for the display devices, almost

all devices have to use DMA to transfer complex data structures

(especially those involving storage and network). Therefore, DMA is

extensively used in a hypervisor, requiring us to pay more attention

to DMA-related code when applying fuzzing to the hypervisor.

Table 1: Statistics of the number of devices supporting DMA and all devices

in QEMU.

Category Device (support DMA) Number Total

USB uhci, ehci, ohci, xhci 4 4

Storage

esp, ahci, lsi53c810, megasas, mptsas, nvme,
pvscsi, sdhci, virtio-blk, virtio-scsi, virtio-9p

11 12

Network

e1000, e1000e, eepro100, pcnet, rocker,
rtl8139, tulip, vmxnet3, virtio-net

9 10

Display (null) 0 7

Audio ac97, cs4231a, es1370, intel-hda, sb16 5 7

Avg 29(72.5%) 40(100%)

2.3 Core Challenge-Nested Structures

The hypervisor is designed to transfer data from/to guest mem-

ory for device-driver communication. This transfer operation is al-

ways performed through specific APIs related to DMAmechanisms,

such as pci_dma_read and pci_dma_write in QEMU. Specifically,

pci_dma_read copies a block of data from guest memory into a



1.  typedef struct UHCI_TD {
2.     uint32_t link;
3.    … //    various kinds of metadata
4.    uint32_t buffer;
5.  } UHCI_TD;

6.  typedef struct UHCI_QH {
7.    uint32_t link;
8.     uint32_t el_link;
9.  } UHCI_QH;

10.  static void uhci_process_frame (UHCIState *s) {
11.     uint32_t link;
12.     UHCI_TD td;
13.     UHCI_QH qh;
14.     uint8_t *buf;
15.     …
16.     pci_dma_read (&s->dev, s->frame_addr, &link, 4);
17.     …
18.     for (; is_valid (link);) {        // unknown nested level
19.         …
20.         if (is_qh (link)) {
21.             pci_dma_read (&s->dev, link, &qh, sizeof(qh));
22.             …
23.             continue;
24.         }
25.         pci_dma_read (&s->dev, link, &td, sizeof(td));
26.         …
27.         pci_dma_read (&s->dev, td.buffer, buf, td.len);
28.         …
29.         /*    main usb packet processing    */
30.         link = td.link;
31.     }
32. }

td

...

buf

memory view

Unknown at static time

link

Frame

td

Nested level

QEMU source code

link

Meta. buffer

link (null)

Meta. buffer

link

el_link(null)

link(null)

el_link

qh

qh

...

buf

Figure 2: An example presenting nested structures in Universal Host

Controller Interface (UHCI). Here td, qh, buf represent three different types
of objects, respectively (td and qh are the structures containing the amounts

of metadata, while buf is the raw data).

host buffer while pci_dma_write does the opposite procedure. By

specifying address arguments, those DMA operations can target

any location of the guest’s physical memory.

We observed that data objects transferred via the DMA mech-

anism are often constructed as nested structures (i.e., structure

A contains a pointer to structure B), where this nested feature is

being supported by the above-mentioned pci_dma_read. More im-

portantly, this nested feature could be multi-layer and multi-type,

as the hypervisor organizes these structures in a hierarchical or tree

structure starting with a root node. Specifically, this feature blocks

fuzzing in exploring hypervisor code mainly due to the following

two reasons:

1) Nested Form Construction. It is challenging for fuzzing

techniques to construct a nested data object with multiple levels

of data or sub-objects, which can be arbitrarily complex. (1) In

terms of the overall organization, the devices’ data structures can

be represented as a hierarchy of nested nodes like a tree. The nodes

are blocks of certain data, and pointers establish the links between

nodes. Notice that the nested level of this tree could be rather deep,

far more than one layer. Also, these tree-like structures can be

viewed as recursive data structures because a tree may have other

trees as elements. In the tree, a node includes the subtree with all its

descendant nodes. Random fuzzing techniques struggle to come up

with such a recursively defined data structure, which requires more

domain knowledge about the device specifications. (2) At the node

level, each node can be regarded as a combination of metadata and

pointers. However, the offset of the pointer in a node is uncertain

and varies according to the definition of different data structures.

Given a node as mutation input, a coverage-guided fuzzer mutates

the whole node and treats all fields equally, which results in a

random pointer to an invalid or unmapped page. Unlike metadata,

pointer values are usually fixed, pointing to meaningful content,

and are not expected to be mutated. The lack of semantics at the

node level also makes it difficult to construct nested structures.

As a result, the fuzzer needs to understand the semantics of data

organization (hierarchically nested pattern) and be aware of internal

semantics imposed in every single node (which field is the pointer).

2) Node Type Awareness. Since the devices support various

data types according to the specifications, fine-grained semantic

knowledge about the nested nodes is desired. The nested structures

are linked by different types of nodes. Each node has one or more

pointers to different data types. The connection relationship of dif-

ferent nodes is regular and specified according to specifications (i.e.,

the packet descriptor points to the packet body), which requires us

to establish a correct pointing relationship between nodes. More-

over, precise pointing relationships can only be known at runtime

in many cases: Some fields are used to indicate the exact type of

data structure the pointer refers to, since the same pointer can

reference multiple types of data; Some fields are used to indicate

whether the current node is a termination node. If the pointer has

its termination bit set, it assumes there is no more work to complete

for the current node and all its children. Hence, the random combi-

nation of arbitrary nodes generated by fuzzing does not satisfy the

semantic requirements of the devices, which would be rejected at

an early stage of processing and heavily limits the fuzzers to find

deep bugs. At the node level, the fuzzer requires to extract pointers

from given nodes and needs to be aware of the semantics of the

pointer (referred node types).

To better illustrate how these nested structures are supported

by the hypervisor, the following is the common case of how the

hypervisor handles a nested structure: 1) Starting from the root

node, the hypervisor first obtains a pointer (specified by an address

register) pointing to a data structure A located in the guest memory;

2) the hypervisor dynamically allocates the buffer to hold the copy

of A; 3) the hypervisor copies A from guest memory to this allocated

buffer using pci_dma_read; 4) referring to a pointer field within A,

which indicates its child node B, the hypervisor allocates another
buffer to hold the copy of B; 5) the hypervisor performs another

pci_dma_read to copy B from guest memory to its allocated buffer;

6) Following the pointer within structure B, the hypervisor performs

next pci_dma_read again to copy the next structure C. As above,
the hypervisor recursively traverses the tree and moves down until

it reaches the termination node, at each node holding a copy of the

user-supplied structure.

Without prior knowledge about such a complex nested form

of structures, traditional fuzzing cannot properly fuzz the entire

data structure as it hardly figures out complex data formats behind

each object. Such nested structures are heavily used in hypervisor

implementation, severely hindering traditional testing schemes

from extending code coverage. We utilize the USB_UHCI protocol as
an example to demonstrate the nested structures in the hypervisor.

Example: Nested Structures in USB-UHCI. Universal Host

Controller Interface (UHCI) is responsible for providing virtual

USB devices to guests in modern hypervisors, which is Intel’s

spec for USB 1.0 [12]. Figure 2 presents a simplified function

uhci_process_frame, which processes USB packet transmitted

to USB endpoints. The function, scheduled in each cycle, requires a

tree-structured memory buffer which is initially indicated by the

device’s address register (i.e., s->frame_addr). At line 16, the first
entity is copied into the allocated hypervisor buffer link. A specific



field in link determines the type of next referenced node, either

TD or QH, which indirectly influences the control flow to different

blocks. (1) If the indicated type is QH (Queue Head), the data struc-

ture pointed by link will be copied into allocated buffer qh (line
21). (2) If the indicated type is TD (Transfer Descriptor), then the

data structure pointed by link will be copied into allocated buffer

td (line 25). Next, a subsequent memory copy, pointed by a field

member of previously copied buffer (i.e., td.buffer), occurs with
a certain size (i.e., td.len) at line 27. After performing the USB

transactions (line 29), the function continues to traverse the tree

recursively during the execution of the entire loop (line 18). Noted

here that without built-in knowledge of such a nested form of data

structures, the hypervisor cannot be tested thoroughly in two as-

pects: (1) The execution likely stops due to invalid memory access

where the hypervisor cannot fetch meaningful data, before reach-

ing its main functionality (line 29). (2) It is hard to trigger the deep

logic that handles recursively defined structures in the hypervisor.

Without constructing recursive data structures, we cannot test the

program’s behavior completely since each recursion accumulates

the program’s state.

A straightforward way to handle nested structures is to use

structure-aware fuzzing techniques. These techniques require de-

velopers to create a formal model that precisely captures the speci-

fication of devices. The model-based methods follow pre-defined

rules to generate corresponding types of structures and concatenate

them together. Based on the model, fuzzing techniques enumerate

all possible nested forms of structures to verify the functionalities

of hypervisors or find bugs. However, structure-aware fuzzing tools

have significant drawbacks as they are time-consuming and error-

prone processes, thus not scalable for hypervisor testing. Typically,

protocol specifications contain hundreds of pages, requiring a non-

trivial amount of manual effort to extract the definition of structure.

Humans tend to make mistakes in such tedious work of under-

standing the specification. Besides, the implemented protocol may

not entirely correspond to the specification since developers may

add new functionalities. Thus, it is not plausible for the large-scale

testing of the hypervisor. As a result, an automatic way to handle

nested structures is desired. To the best of our knowledge, no prior

work handles nested structures automatically, which is essential to

apply an efficient and scalable fuzzing to the hypervisor.

3 V-SHUTTLE DESIGN

This section describes the design of V-Shuttle. At a high level,

V-Shuttle is designed to be a scalable, semantics-aware, and light-

weight hypervisor fuzzing framework, combining coverage-guided

fuzzing and static analysis techniques. Moreover, in order to address

the hypervisor-specific challenges in fuzzing, V-Shuttle designs

two different approaches: 1) redirecting the DMA-related functions;

2) semantics-aware fuzzing via seedpools; We start by providing a

threat model for hypervisor security. Based on this threat model,

we describe our fuzzing approach.

3.1 Threat Model

We assume that the attacker is a privileged guest user with full

memory access inside the virtual machine, which, in turn, can

send arbitrary data to its device. This assumption is reasonable

Host System

Kernel Driver
(KVM etc)

Fuzzing Agent

Virtual Device

Hypervisor

Fuzzer

Fuzzer Generated Input
Coverage Feedback

Seed Pool

…

Figure 3: The overview of V-Shuttle.

because each user has root privileges on his own virtual machine

in the public cloud scenario. If the hypervisor does not take care of

untrusted data from the guest user, security problems like denial-

of-service (DoS), information leakage, or privilege escalation may

happen. Once attackers exploit the vulnerability in the hypervisor

to escape the VM, they could take over other VMs on the same host,

enabling further access to sensitive data outside of the exploited

VM.

3.2 System Overview

Fig 3 shows a high-level overview of V-Shuttle, which leverages a

fuzzing agent integrated into the hypervisor to feed random input

to the virtual device - the fuzzing target. The fuzzing agent runs

in the hypervisor, persistently sending read/write requests to the

tested virtual device. The following list summarizes the high-level

functionalities of its main components.

The fuzzer is placed outside this hypervisor. Moreover, we lever-

age persistent mode to enable in-process fuzzing, which means we

do not restart a new instance for each new input. This is mainly

because: (1) Restarting a hypervisor process or reverting a snapshot

is prohibitively expensive in terms of run-time. Even with the fork-

server optimization, each new input still incurs the cost of fork().
(2) Hypervisor is an event-based system, which is designed to sup-

port long-running interaction. Empirically, most bugs are found by

repeated fuzz testing of discovered branches. That is because deep

states in hypervisor are less likely to be reached by one test case,

relying on multiple interactions to build prior states. This technique

not only enhances the overall fuzzing performance but also helps

to explore deep interactive states.

The fuzzing agent is the core component of V-Shuttle placed

inside the hypervisor, which (1) drives the fuzzing loop interacting

with both the fuzzer as well as the virtual device, and (2) man-

ages the DMA/MMIO allocation contexts. To adapt the traditional

application-fuzzing way to hypervisors, we redirect all data inter-

actions from the guest system to the fuzzed inputs. The fuzzing

agent emulates an attacker-controlled malicious guest kernel driver

in real-world scenarios, intercepting all DMA and IO read/write

instructions from the device. Every read/write operation from the

hypervisor device is dispatched to a registered function in the

fuzzing agent implementation, which performs actions and returns



fuzzer-generated data to the device. Note that the fuzzing agent is

a general component integrated into the hypervisor, which can be

adapted to almost all types of devices. When deploying the fuzzing

process on the new device, no additional human labor is required.

3.3 DMA Redirection

As described in Section 2.3, heavy use of nested structures makes

fuzzing ineffective, as it requires precise memory layout of complex

nested structures, which is unfriendly to traditional fuzzing. Specif-

ically, when the fuzzer generates random data structures, including

the random pointer field, which indicates the following structure,

the execution likely stops due to invalid memory access. However,

providing syntactically valid structure info for mutators requires

lots of manual effort and is not scalable because different virtual

devices have different data structure specifications.

To this end, we design a generic DMA redirection approach to

flatten the nested structures by intercepting the device’s access to

the guest’s memory. Operating based on the source code of the

hypervisor, V-Shuttle hooks into the hypervisor’s DMA mecha-

nism and converts DMA transferring to reading from fuzzed input.

Specifically, we select the DMA-related APIs (e.g., pci_dma_read
and its wrapped function) as patterns and insert macros into the

target device’s source code. Then all DMA-related APIs are replaced

by macros with methods that read data from files. Thus all memory

reads can be redirected to file-based fuzzed inputs during fuzzing.

Listing 1 summarizes the simplified code of the DMA redirection.

The reason why V-SHUTTLE focuses on the DMA-related functions

is that they are responsible for delivering data between guest and

host, constituting the key mechanism in constructing the nested

data structures. In this way, the operation of DMA addressing is

eliminated completely. Since we have full control over the DMA

mechanism, any DMA request will be responded with a fuzzed in-

put generated by the traditional coverage-guided fuzzer, no matter

where the pointer points to, even address 0. Note that V-Shuttle

only manipulates the data that the devices read from the guest’s

memory, but not the data they write, because the devices are more

attackable by malformed guest input. When facing the DMA read

request in the run time, the following procedure is performed: 1)

V-Shuttle ensures that DMA read function call originates from

the target device we are monitoring. This is because we’re not

interested in DMA transfer requests from other internal system

components, which are not controlled by guest users. 2) Given the

host process buffer and the buffer’s size, V-Shuttle fetches appro-

priate data from the seed file generated by fuzzer directly, instead

of reading from the guest’s memory.

1 // before hooking

2 pci_dma_read(dev, buffer_addr, &buf, size);

3

4 // after hooking

5 if (fuzzing_mode)

6 read_from_testcase(&buf, size);

Listing 1: Conversion to fuzzed inputs.

Figure 4 shows the flattened data structure graphically based

on DMA redirection. Contrary to the traditional fuzzing method
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DMA

DATA2

DATA3

. . .
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Fuzzed Input

Figure 4: Flatten the nested structures into one-dimensional vectors

through DMA redirection.

that generates well-structured inputs tediously in guest space, V-

Shuttle directly provides a flattened sequence of DMA data for

hypervisor fuzzing. This approach transforms all nested structures

into one-dimensional vectors while maintaining the semantics of

nested structures, such that all underlying code blocks are reachable

through redirected DMA. For each fuzzing iteration, the fuzzer

engine first generates the sequences of mutated DMA data. Then

the device starts traversing the tree, in which each DMA request is

redirected to the fuzzed input, taking a block of data from the DMA

sequence in order. Thus, all code paths containing DMA requests

are able to be covered smoothly, rather than stuck somewhere the

device cannot fetch anything from the guest’s memory.

DMA redirection is an approach that only flattens the nested data

while leaving the semantics of the structure intact, which removes

the need for higher-level tree structures like the one in Firgure 2.

We eliminate the pointer in each node while still maintaining the

pointing dependence information implied by each node, so this will

not break the normal execution of the device. Benefiting from this

design, V-SHUTTLE does not rely on pointers to address data but

rather directly takes it from the fuzzed inputs. V-SHUTTLE treats

all data structures as a bunch of metadata without caring about

the pointers, just like userspace programs (ring 3). The content of

each node in a higher-level tree structure is generated randomly,

including the pointer field. As shown in Figure 2, the pointer to

a buffer and the pointer link between nodes are both randomly

generated. Each time a pointer is addressed, it will be redirected

to the fuzzed inputs. This design choice makes the fuzzing process

fully automatic to test the hard-to-trigger path requiring nested

structures, and does not require any user assistance. As compared

with state-of-the-art methods, our approach is fully scalable as well

as domain knowledge-free and thus provides better extensibility.

3.4 Semantics-Aware Fuzzing via SeedPools

Using the above-mentioned DMA redirection that flattens the

nested structure, we successfully automate the fuzzing process to

cover the primary execution paths. However, this intuitive method

does not take the node type into account when organizing DMA se-

quences, which introduces a low-efficiency problem. As described

in Section 2.3, the node types in nested structures are dynami-

cally determined, which means the program’s control flow changes

dynamically depending on previously consumed DMA test cases.

However, the above-proposed method only organizes DMA data



into one-dimensional vectors in order, without classifying the type

of each node. Since the combination sequence of DMA requests

differs significantly in different fuzzing iterations, simply concate-

nating the node sequences leads to the loss of fuzzing semantics

for each node. Suppose the hypervisor requests structure A first

and then structure B in the current iteration. This renders coverage-

guided fuzzer teaching itself to generate seed with semantics close

to the combination sequence of A and B. However, if the hypervisor
requests structure A first and then structure C in the next iteration,

the execution flow will pass the path with A but fail in the path

with C. This fuzzer-generated structure B would be rejected by the

hypervisor, since structure B presents semantically invalid to the

requested structure C. Such an indeterministic process without clear

feedback guidance degenerates coverage-guided fuzzing into dumb

fuzzing, as the fuzzer would be confused about which direction to

evolve. Compared to the coverage-guided fuzzer, a semantics-blind

dumb fuzzer will waste time in the mutation process, resulting in

low test efficiency.

In order to address this issue, we propose a fine-grained

semantics-aware fuzzing method. Fundamentally, our design aims

at providing type awareness for the fuzzing engine, so that it can

dynamically generate targeted test cases according to the requested

data type of the program. This design choice allows us to lever-

age the advantages of coverage-guided fuzzing, favoring the input

which exhibits a new coverage and guiding the fuzzer towards

learning to generate semantically valid inputs to each type of data.

Overall, with the help of type awareness, the fuzzing engine is ca-

pable of providing semantically correct node data when traversing

the nested structures.

1 // before hooking

2 pci_dma_read(dev, buffer_addr, &buf, size);

3

4 // after hooking

5 if (fuzzing_mode)

6 read_from_testcase(&buf, size, type_id);

Listing 2: Conversion to fuzzed inputs with type constraints.

To this end, V-Shuttle first decouples the nested structures

into independent nodes by using an improved DMA redirection

method. Next, it implements a seedpool-based fuzzing engine to

maintain multiple seed queues, one for each type of decoupled node.

Thenwith the type guidance, V-Shuttle performs semantics-aware

fuzzing to the hypervisor. This design method is based on the basic

knowledge: the semantics of each node is independent, and there is

no dependency between them. Thus, this decoupling method does

not destroy the semantics of the whole nested structure. Besides,

this method trades off the semantic granularity and deployment

cost well, since the number of data structures with different types

in the hypervisor implementation is limited (no more than dozens).

In the following, we describe each step in detail.

1) Static Analysis to Label DMA Objects. To gain awareness

of node types, we retrieve type information indicated by each DMA

operation at the code level. Typically, the object transferred by

pci_dma_read is uncertain since one function call may serve for

different types of objects (when wrapped into an internal function),
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Figure 5: Decouple the nested structures into independent seed queues

through DMA redirection with type constraints.

which requires an accurate type indication for each DMA opera-

tion. Therefore, we define a DMA object as a host’s structure that

holds the copy of the guest’s data through DMA. Each DMA object

represents a unique type of node. Aiming to label all the DMA

objects, V-Shuttle performs static analysis on the hypervisor’s

source code. In particular, V-Shuttle utilizes a live-variable analy-

sis, which is a special type of data flow analysis. Considering the

host’s buffer field of DMA operations (e.g., pci_dma_read, and its

wrapped function) as the source, we do the backward data flow

analysis from the source to its declaration or definition (the DMA

object). After collecting all the DMA objects, we assign unique IDs

to each of them. These labeled objects help us identify the node

type of each DMA request at runtime and ensure that each type of

DMA object can be correctly grouped.

2) DMA Redirection with Type Constraints. Given the la-

beled objects, V-Shuttle now understands the specific type of

node required when performing DMA transfer in the fuzzing itera-

tion. Based on the previous DMA redirection, V-Shuttle introduces

additional type constraints when converting the DMA transferring

to reading from fuzzed input. Listing 2 summarizes the simplified

code of the DMA redirection with type constraints. With additional

type constraints, V-Shuttle ensures that each memory read will

be constrained to fetch data from the specific seed queue according

to the node type (rather than an ordered DMA sequence). In this

manner, V-Shuttle decouples the nested structures into individual

nodes, and clusters those into categories based on the node type,

as shown in Figure 5.

3) Seedpool-Based Fuzzer Design. Aiming to handle multi-

object inputs (more than a single file input), we extend the AFL to

support multiple seed queues in parallel. We call these multiple par-

allel queues as seedpool. This allows the fuzzer to performmutations

on each seed queue individually for each type of program input.

With coverage feedback, the fuzzing engine can quickly pick up on

the device’s structure and patterns, learning how to generate inputs

tailored specifically to each type of object. Even if the program

attempts to take different types of data as the input dynamically

in the execution flow, it is feasible for the fuzzer to provide the

semantically valid inputs from the corresponding seed queues.

This seedpool-based method reuses existing coverage-guided

fuzzing algorithms and introduces parallelism. All basic seed queues

are treated equally, independent of each other, and adopt the same

mutation strategy (deterministic stage, havoc stage, etc.). Besides,



all basic queues share a global coverage map, in which any inter-

esting seed that exhibits a new branch will be added to its belong-

ing seed queue. Based on this separate organization, each seed

queue will finally evolve its own pattern that favors the input with

the corresponding type, utilizing the self-learning ability of the

coverage-guided fuzzer.

4) Semantics-aware Fuzzing Process. Combining runtime

type awareness and seedpool-based fuzzing engine, V-SHUTTLE

performs semantics-aware fuzzing to the hypervisor. The fuzzing

process runs in a typical client-server model, where V-Shuttle

(server) handles incoming DMA requests from the target hypervisor

(client). The main fuzzing loop is as presented in algorithm 1 in

Appendix, which has four main steps: (1) V-Shuttle establishes

all the basic seed queue and initializes the global coverage map, as

in lines 2-5 of algorithm 1. (2) V-Shuttle repeatedly blocks to wait

for the DMA requests from the target hypervisor, which indicates

the type of required data. (3) V-Shuttle selects seed from the cor-

responding seed queue and mutates it to generate a new candidate

seed. (4) V-Shuttle feeds the target program with the new candi-

date seed and tracks the coverage information. If the candidate seed

explores new coverage, it will be regarded as an interesting seed

and pushed into its belonging seed queue, as presented in lines 9-12.

This method renders each basic seed queue learning from scratch to

generate its own type of interesting seeds. After convergence of this

algorithm, we typically obtain semantics-valid input for each type

of DMA object and thus enhance the overall efficiency of fuzzing.

In the reproducing stage, V-Shuttle automatically recovers the

connections between the seeds from different seed pools by keep-

ing a reference from the currently accessed seed to the previously

accessed seed, so as to produce reliable and reproducible crashes.

Example: Semantics-Aware Fuzzing in USB-UHCI. Fig-

ure 9 we present in Appendix shows the semantics-aware

fuzzing in USB-UHCI in detail. As a first step, we list three

DMA objects (qh, td, and last_td) we found by live-variable

analysis. Specifically, since qh holds the user-supplied buffer

through pci_dma_read in uhci_process_frame, we replace

the pci_dma_read(&qh,sizeof(qh)) that serves for the

object qh with pci_dma_read(&qh,sizeof(qh),1). In ad-

dition, since td and last_td hold the user-supplied buffer

through pci_dma_read in uhci_read_td (pci_dma_read
here serves for multiple objects in a wrapped function), we

replace the function call uhci_read_td(&td) that serves

for the object td with uhci_read_td(&td,2), replace the

function call uhci_read_td(&td) that serves for the ob-

ject last_td with uhci_read_td(&td,3), and replace

pci_dma_read(td,sizeof(*td)) with pci_dma_read(td,
sizeof(*td),id). In this way, these three kinds of objects

represent nodes with different semantics in the nested structures.

Then guided by the type information, V-Shuttle performs

DMA redirection with ID constraints, and dynamically maintains

three seed queues that target qh, td and last_td. Each time the

hypervisor requests a kind of DMA object, the ID is sent to the

fuzzer through the UNIX pipe as guidance information, with

which V-Shuttle takes the corresponding seed from the fuzzed

inputs. With the coverage feedback, each basic seed queue tends to

produce semantics-valid inputs for each of the three DMA objects.

3.5 Lightweight Fuzzing Loop

Device Instance
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MMIO/PIO 
Callbacks

③ Invoke Device 
Callbacks explicitly
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Processed

① Retrieve MMIO/PIO 
Operation Callbacks

② Start Fuzzing                

Fuzzing Entry
Setup

Main Fuzzing 
Loop
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Figure 6: V-Shuttle’s fuzzing loop.

Previous work on hypervisor fuzzing usually used some kind

of agent running in the guest OS [13, 20, 31, 50, 58]. There are

some limitations to this method. (1) This degrades performance

due to the frequent use of VM-exit. Whenever the guest VM needs

to access the hardware, it triggers a trap that causes a VM-exit in

the host kernel. Then the VM-exit transfers the control back to the

hypervisor, which emulates the privileged operation on behalf of

the VM. This shows that every access request in the guest system

results in a “heavy-weight exit” to the hypervisor. (2) This increases

the complexity of implementation and communication instability,

as it requires establishing a communication channel between host

and guest for transmitting fuzzed instructions.

Environment Main Function Model. V-Shuttle utilizes a

lightweight design to drive the fuzzing loop. Distinct from previous

approaches, V-Shuttle integrates the fuzzing agent into the hyper-

visor instead of running it in guest OS (Section 3.2). The hypervisor

is an event-based system. The control flow is driven by events from

guest OS. Therefore, V-Shuttle constructs an environment main

function to serve as a fuzzing entry point (fuzzing harness [17, 35]).

The whole environment model is shown in Figure 6. V-Shuttle

hooks hypervisor’s API used to initialize MMIO/PIO regions. When

the device is initialized during the VM booting, V-Shuttle retrieves

MMIO/PIO operation(read/write) callbacks ①. We regard them as

fuzzing entry points, as MMIO and PIO are the main entry for driv-

ing the interaction with hardware (as described in Section 2.2), with

which V-SHUTTLE drives the fuzzing loop interacting between

the fuzzer and the device ②. During the fuzzing loop, V-Shuttle

explicitly invokes the I/O callbacks using fuzzer-generated data

③. Afterward, the device emulator processes the I/O requests and

performs transactions ④. Finally, the fuzzing process loops back to

the start, repeating the above steps ⑤. Hence, as both the fuzzer

and the fuzzing agent run in one host system, sharing input files

and coverage bitmap between them is straightforward. This design

choice makes V-Shuttle lightweight, driver-free, and easily im-

plemented. Because taking device operation callbacks as specific

fuzzing entry points can avoid VM-exit, which lowers the perfor-

mance cost. Meanwhile, when applying fuzzing to a new device,

V-Shuttle would automatically set up the fuzzing requirements

via the above methods without additional human resources.

4 IMPLEMENTATION

We implement live variables dataflow analysis (described in Sec-

tion 3.4 - (1)) based on CodeQL [6] static analysis platform. We use

American Fuzzy Lop (AFL) version 2.52b for fuzzing [5].

Hypervisor Instrumentation. To apply coverage-guided

fuzzing, we selectively instrument device-related code in the hy-

pervisor to gain feedback information, using AFL’s edge coverage



scheme. When the hypervisor starts, the instrumented code in the

target hypervisor writes the coverage feedback to the bitmap, which

is exported as a shared memory area accessible by the fuzzer com-

ponent. Note that the instrumentation is limited to device-related

code instead of the whole hypervisor for performance concern [58].

Initial Corpus Collection. To improve the fuzzing efficiency

further, we collect initial seeds of valid test cases under standard

full-system emulation, logging all accesses to the target device via

DMA and MMIO/PIO. This step is optional: one could start from

any arbitrary seed or craft test cases on their own.

5 EVALUATION

We evaluate V-Shuttle extensively on QEMU and VirtualBox,

which are two popular hypervisor platforms among the world.

Both QEMU and VirtualBox are the targets in the virtualization

category of many PWN contests, such as Pwn2Own, Driven2Pwn

and TianfuCup. We perform experiments to answer the following

research questions (RQ):

RQ1: Can V-Shuttle be scalable when fuzzing hypervisor

virtual devices?

RQ2:What is the performance of dumb fuzzing, structure-

aware fuzzing, V-Shuttle and V-Shuttle semantics-aware

mode?

RQ3:What is the performance gain of V-Shuttle compared

to the state-of-the-art hypervisor fuzzing tools such as Nyx,

Hyper-Cube and VDF?

RQ4: How is the vulnerability hunting capability of V-

Shuttle?

Our experiments are run on a machine with 2.20 GHz, 48-core

Xeon, and 256 GB RAM running Ubuntu 18.04 LTS. We targeted

QEMU 5.1.0 and VirtualBox 6.1.14, and built them with AddressSan-
itizer [53] to expose memory corruption bugs. Each experiment is

run for 24 hours and repeated for 10 times. We report their average

statistical performance [38].

5.1 Scalability

We perform large-scale experiments to demonstrate the scalability

of V-Shuttle (RQ1). We applied V-Shuttle(with semantics-aware

mode enable) to a dozen QEMU virtual devices. The code coverage

and performance overhead statistics data in Table 2 shows that

V-Shuttle can be easily configured for various virtual devices

fuzzing setup and efficiently promote the fuzzing process.

5.1.1 Code Coverage. To examine the ability of V-Shuttle, we

perform experiments in QEMU to discover code coverage in 24h

fuzzing. We used gcov to measure branch coverage. We choose 16

popular QEMU devices for evaluation. They are chosen based on

the following features: popularity in the community, development

activeness, and diversity of categories. These devices are represen-

tative on the x86 platform (including audio, graphics, network, USB,

and storage devices), which cover standard virtualization scenes

such as cloud and virtual private server (VPS) hosting and desktop

virtualization. Each device was fuzzed within a single hypervisor

instance.

Table 2 presents some insightful statistics about the line, func-

tion, and branch coverages. For branch coverage, the smallest im-

provement in the percentage of branch coverage was seen in the

AHCI virtual device (9.7% increase), and the largest improvement

in branch coverage was seen in the CS4231a virtual device (82.8%
increase). Also, the last line shows the final average coverage after

applying V-Shuttle. On average, the initial seed test cases cov-

ered 40.98% of line coverage, 58.10% of functions coverage, and

25.03% of branch coverage. By fuzzing, V-Shuttle respectively

increased their coverage to 87.95%, 89.58%, and 77.18%. V-Shuttle

further covered 46.97%, 31.48%, and 52.15% of the code, because

the hypervisor-specific solutions in V-Shuttle carry the fuzzing

exploration towards the application execution stage.

The results show that our framework can be adapted to various

types of devices, including USB, network, audio, storage, etc., which

further confirms V-Shuttle’s scalability. We emphasize that the

whole process of implementing fuzzing to each device is automatic

- no human intervention is required at any point. We attribute

this feature to our DMA redirection solutions. By redirecting data

interaction interfaces to fuzzing input, fuzzing hypervisor becomes

the same as fuzzing application, which is naturally suitable for

coverage-guided fuzzer, such as AFL, libfuzzer, etc.

However, there are still some code coverages not covered in

Table 2, mainly due to two reasons: (1) some devices are not tested

at all. (2) some code snippets can only be covered with specific

emulated architectures (Arm/PPC/MIPS etc.) and startup configu-

rations.

In summary, V-Shuttle can significantly improve the code cov-

erage as well as scalability.

5.1.2 Overhead Analysis. The last column in Table 2 presents

the number of execution per second. As expected, V-Shuttle man-

ages to achieve a throughput of 6110.23 executions per second on

average, since we use a very lightweight design without fork() or
restarting of the hypervisor. Besides, as we integrate the fuzzing

agent into the hypervisor instead of running it in guest OS, the

fuzzer spends negligible time on data interaction. This design choice

makes V-Shuttle comparable to traditional application fuzzing.

We demonstrate that our framework offers a significant advantage

over other designs where the fuzzer runs in a kernel module. For

comparison, we’ve also evaluated the throughput of dumb fuzzing

as our baseline, which simply writes a bunch of random data into

basic interfaces (MMIO, DMA) without the knowledge about the

nested DMA structures. The results in Table 2 show our semantics-

aware DMA redirection fuzzing approach is comparable to dumb

fuzzing on the same machine and workload.

5.2 Effectiveness

To validate the effectiveness of V-Shuttle main framework and

the semantics-aware fuzzing mode, we evaluate V-Shuttle-M (dis-

abling the semantics-aware fuzzing mode) and V-Shuttle-S (en-

abling semantics-aware fuzzing mode) for comparison. We then

implement a dumb fuzzing as our baseline, which has no knowledge

of the DMA data and its deep nested characteristics (like VDF), and

randomly mutates 𝑘 bits of inputs to the basic interfaces (MMIO,

DMA). Also, we studied the Intel specifications and built structure-

aware fuzzing (also refers to generation-based fuzzing) that targets



Table 2: The line, function and branch coverage of V-Shuttle as well as the performance results on the 16 QEMU devices (24 hours each). Initial coverage

shows the percentage covered during device initialization states (i.e., BIOS and the guest kernel initialization of the device). Total coverage shows the

percentage covered after 24 hours of fuzzing.

Device

Line Coverage Functions Coverage Branches Coverage Speed(exec/s)

Initial Total Initial Total Initial Total Dumb-Fuzzing V-Shuttle

Audio

CS4231a 30.00% 96.10% 57.10% 100.00% 3.00% 85.80% 10918.21 7632.70

Intel-HDA 68.30% 95.00% 78.60% 95.20% 42.10% 78.30% 9596.41 8568.50

ES1370 54.20% 99.62% 73.70% 100.00% 33.80% 91.91% 8786.85 6496.04

SoundBlaster 12.30% 99.19% 28.60% 100.00% 3.00% 81.52% 5123.76 3242.22

Graphics ATI-VGA 27.40% 86.00% 66.70% 80.00% 15.30% 79.40% 10350.61 10103.42

Network

E1000 36.20% 94.20% 46.90% 96.90% 16.10% 74.50% 5532.90 1186.92

NE2000 6.70% 89.60% 28.60% 100.00% 3.80% 71.90% 12213.31 11392.45

PCNET 24.60% 97.40% 44.80% 100.00% 8.30% 88.90% 5880.21 4833.35

RTL8139 28.10% 97.60% 59.10% 97.70% 12.30% 88.40% 6333.37 5495.18

USB

UHCI 81.30% 89.10% 86.10% 88.90% 68.90% 82.30% 10592.12 9273.25

EHCI 40.70% 82.70% 53.40% 89.00% 32.70% 71.90% 3869.43 2265.34

OHCI 46.90% 83.70% 65.10% 86.00% 33.30% 79.20% 7221.49 5228.43

Storage

NVME 38.60% 72.40% 47.30% 76.40% 22.80% 65.10% 10981.52 7870.23

Lsi53c895a 26.90% 79.00% 46.70% 71.10% 9.30% 75.70% 6363.84 4091.53

Megasas 58.10% 63.80% 68.30% 70.00% 43.90% 58.50% 5863.47 4558.58

AHCI 75.30% 81.80% 78.60% 82.10% 51.90% 61.60% 5577.74 5525.55

Average 40.98% 87.95% 58.10% 89.58% 25.03% 77.18% 7844.64 6110.23

these devices (RQ2). This structure-aware fuzzing is manually writ-

ten according to various rules in the device specification, including

manual construction of the nested structure and establishment of

the relationship between different types of nodes. Our customized

structure-aware fuzzing follows the common steps: (1) Setup device

states, registers using I/O ports or mapped memory. (2) Generate

random device data structures. (3) Issue commands for processing

the data structures.

We choose 3 USB controllers (UHCI, OHCI, and EHCI) for eval-

uation, mainly for the following reasons: 1) The USB controllers

use DMA more frequently and are more representative. Since our

work mainly focuses on DMA, the performance will be good as

long as the devices use DMA. Also, as described in Section 2.2, most

devices of hypervisors use DMA. 2) The security of USB is partic-

ularly important. USB is widely used and deployed in the public

cloud, and is usually mounted by default. In recent years, there are

many virtual machine escaping cases on USB devices [1–3]. Hence

it is crucial to test USB. 3) Building the structure-aware fuzzing

for a device involves massive human effort, since it requires us to

understand the specification. Therefore, we limit our comparison

to these three devices.

We evaluate V-Shuttle-M, V-Shuttle-S, structure-aware

fuzzing, and dumb fuzzing on QEMU for 24 hours, 10 runs. We

ran the target hypervisor with gcov, and called __gcov_flush() every
second to dump the coverage found over time. Figures 7 shows the

branch coverage results in log scale.

5.2.1 V-Shuttle Main Framework. We can learn from Figure 7

that V-Shuttle-M can greatly outperform dumb fuzzing. That is

because dumb fuzzing has no prior knowledge of data structure

defined by specifications, thus stuck in the initial fuzzing stage.

V-Shuttle-M also discovers more branches than structure-aware
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Figure 7: QEMU’s branch coverage results of V-Shuttle during a 24-

hours run. The line indicates the averages while the shaded area represents

the 95% confidence intervals across 10 runs.

fuzzing in almost every case. For instance, on EHCI, structure-

aware fuzzing discovers about 64.6% of branches in 24 hours, while

V-Shuttle-M discovers 71.4%. According to our analysis, it is

mainly because (1) V-Shuttle-M’s feature could cover hard-to-

take branches caused by frequent use of pci_dma_read function,
where its argument address is hardly predictable, which points to

an unknown type structure with multi-layered feature (Section 3.3).



(2) Our structure-aware fuzzing is still in progress and not well-

crafted enough. This result tells, unlike the automatic and accurate

nature of V-Shuttle-M, writing manual rules by human effort is

subject to error-prone as well as time-consuming tasks.

5.2.2 Semantics-Aware Fuzzing Mode. Comparing V-Shuttle-S

with V-Shuttle-M, we can learn that the final coverage results

are nearly identical for all the cases, but V-Shuttle-S reaches the

peak point faster than V-Shuttle-M. Due to the semantics-aware

feature of the seedpool-based seed generation, V-Shuttle-S quickly

learned how to generate semantically valid data structures through

different contexts, which led to the deep execution of the hypervisor.

We believe this provides lots of insight to accelerate hypervisor

fuzzing.

In summary, both the V-Shuttle main framework and

semantics-aware fuzzing mode present outstanding coverage

improvement (better than loosely written structure-aware tem-

plates) without ongoing manual efforts. Better performance can be

achieved if integrating the semantics-aware fuzzing mode, which

could further accelerate the convergence speed of V-Shuttle.

Table 3: The branch coverage found by VDF, Hyper-Cube, Nyx and V-

Shuttle on the 8 QEMU devices. Std denotes the standard error over 10

runs. △ denotes the difference in percentage points between V-Shuttle

and Nyx.

VDF Hyper-Cube Nyx V-Shuttle

Device Cov Cov Cov Cov Std △
CS4231a 56.00% 74.76% 74.76% 85.80% 1.07 11.04%

Intel-HDA 58.60% 79.17% 78.33% 78.30% 0.55 -0.03%

ES1370 72.70% 91.38% 91.38% 91.91% 1.21 0.54%

SoundBlaster 81.00% 83.80% 81.34% 81.52% 0.42 0.18%

E1000 81.60% 66.08% 54.55% 74.50% 0.90 19.95%

NE2000 71.70% 71.89% 71.89% 71.90% 0.92 0.01%

PCNET 36.10% 78.71% 89.49% 88.90% 1.35 -0.59%

RTL8139 63.00% 74.68% 79.28% 88.40% 0.64 8.72%

5.3 Comparison with State-of-the-Art Fuzzers

To answerRQ3, we compare V-Shuttle (enabling semantics-aware

fuzzing mode) against state-of-the-arts fuzzers (Nyx, Hyper-Cube

and VDF). Unfortunately, Nyx and Hyper-Cube were not openly

available at the time we performed the experiments. Therefore,

we only compare them with the devices we have already tested

(Table 2), and we compare them against the numbers published in

their paper. In the comparison, we carefully make the settings to

ensure fairness. 1) There is little difference in different versions of

QEMU, as the amount of code changes is tiny. 2) The evaluation

time is the same. All of them are the results of 24-hour fuzzing. 3)

The machine configuration is also comparable. Most importantly,

according to our observation, the fuzzing speed is not the key factor

affecting the final coverages. Almost all the coverages of the tested

devices by Nyx and Hyper-Cube reach the peak at a very early

stage of the 24 hours.

We display the overall results in Table 3. As can be seen, our

approach achieves significantly better than VDF in all (but one)

scenarios. The difference is due to the fact that the code changed

since VDF performed their experiments, which does not represent

a real difference in performance. Compared to Nyx, there are only

3 out of 8 cases are improved, mainly due to the following two

reasons. First, compared with other cases, these three cases use

DMA more intensively. Therefore, the performance gain benefits

from our DMA redirection approach. Second, the amount of the

code of the other five devices is very small (from 701 to 1753 LoC),

which means that most of the code paths can be triggered in simple

MMIO operations. Thus, there is little space for improvement. The

same results can be seen when compared to blind fuzzer Hyper-

Cube.

However, on the complex devices, the advantages of V-Shuttle

begin to show. For E1000 and RTL8139, we are able to achieve

19.95% and 8.72% better than Nyx. After manual analysis, we found

that nested structures are intensively used when the device encap-

sulates the network packets. We attribute the better performance to

our DMA redirection approach, which unrolls the nested structures

and helps to discover deeper code paths. This demonstrates that our

approach significantly improves the coverage finding capability.

5.4 Vulnerability Hunting

We demonstrate the vulnerability hunting capability of V-

Shuttle(RQ4) from two aspects: ❶ Is V-Shuttle able to uncover

new bugs and vulnerabilities in different hypervisors? ❷ Can V-

Shuttle reproduce previously known vulnerabilities found by

other hypervisor fuzzers?

Table 4:Overview of the vulnerabilities found byV-Shuttle in our targets.

Hypervisor Type #Bugs

QEMU

Use-After-Free 2

Heap-based Buffer Overflow 4

Stack Overflow 1

Infinite Loop 3

Segmentation Fault 6

Null Pointer Derefence 4

Assertion 6

VirtualBox

Heap-based Buffer Overflow 4

Divide by Zero 2

Segmentation Fault 3

5.4.1 Uncover New Vulnerabilities Ability. An overview of the

types of crashes found is shown in Table 4. A full list of the vul-

nerabilities with more details on the exploitability can be found

in Appendix. V-Shuttle has successfully detected 35 previously

unknown bugs, including 26 bugs from QEMU and 9 from Virtual-

Box. We have responsibly reported all the bugs to corresponding

hypervisor developers and have received their positive feedback.

At the time of paper writing, 24 of all the bugs have been fixed. 17

of them got CVE numbers due to the severe security consequences.

Bug Diversity. The 35 bugs in Table 6 cover almost all common

types of memory errors and almost all common device types of hy-

pervisor, showing that V-Shuttle can improve hypervisor security

from a variety of aspects. In particular, buffer overflows, and use-

after-free bugs are commonly believed to be exploitable, whereas

V-Shuttle found 12 bugs and 1 bug, respectively. V-Shuttle also



detected 5 assertion failures from QEMU, which indicate that the

executions reach unexpected states.

Case Study 1: QEMU OHCI Out-of-bounds Access (CVE-

2020-25624) V-Shuttle uncovered an out-of-bounds (OOB)

read/write access vulnerability in QEMU’s USB OHCI controller

emulator. The issue occurs while servicing the isochronous trans-

fer descriptors (ITD), which describes the isochronous endpoint’s

data packets and is linked into the endpoint list. OHCI controller

derives variables start_addr, end_addr from iso_td supplied by

the guest user via DMA transfer. The device calculates the length of

the transmission according to the start_addr and end_addr. The
problem here is that the device does not check the negative length

when end_addr is less than start_addr, which could cause OOB

read and write due to integer overflow vulnerability. A guest user

using this flaw could crash the QEMU process resulting in a denial

of service.

It is difficult to trigger this bug by traditional fuzzing, as it re-

quires prior knowledge about the layout of the endpoint linked list

to avoid invalid memory access due to randomly generated pointer

values. However, V-Shuttle was able to trigger this vulnerability

by intercepting the device’s DMA read operations and supplying

fuzzed structure iso_td to the device regardless of the pointer. In

this way, len can be fuzzed enough to cause overflow; otherwise,

this field may remain unfuzzed.

Case Study 2: VirtualBox BusLogic Heap-based Buffer

Overflow (CVE-2021-2074) V-Shuttle identified a heap-based

buffer overwrite vulnerability in VirtualBox’s BusLogic SCSI em-

ulator, which has 8.2 CVSS Score according to CVE Details [7].
Successful attacks of this vulnerability can result in the takeover

of Oracle VM VirtualBox. The BusLogic device parses the com-

mand buffer and processes the command parameters from the guest.

When initializing a new command, the device gets the number of

bytes cbCommandParametersLeft for the command code param-

eters. cbCommandParametersLeft is subtracted by one each time

while filling the buffer with parameters. Then the device starts

execution of command if there are no parameters left. However,

cbCommandParametersLeft is not checked against 0 at the start.

This allows an attacker to first set the number to 0 and then issue a

command initialization, causing it to underflow. This will lead to an

arbitrary heap out-of-bounds write up to the size of the uint8_t,
which can be exploited to escape virtual machine.

In the fuzzing process, V-Shuttle continuously generated I/O

operations that could let the execution run towards the command

process function and finally trigger the vulnerability.

Table 5: Eifficiency of V-Shuttle in finding previously known vulnerabil-

ities. We measured the total number of executions and the time required. V-

Shuttle found all of the known vulnerabilities within a reasonable amount

of time.

Bug Description Exec Time Found

CVE-2020-25625 OHCI infinite loop 40.5M 2h16m50s ✓
CVE-2020-25085 SDHCI Heap buffer overflow 8.88M 26m19s ✓
CVE-2021-20257 E1000 inifinite loop 235k 40s ✓
CVE-2020-25084 EHCI use-after-free 79.4M 4h37m22s ✓
CVE-2020-11869 ATI-VGA integer overflow 35.6M 2h22m40s ✓

5.4.2 Rediscover Old Vulnerabilities Ability. To demonstrate

practicality, we also present some of the publicly known vulnera-

bilities we could find using our framework. We picked a set of pre-

viously known security vulnerabilities on a vulnerable QEMU (ver-

sion 5.0.0). Additionally, we tried to rediscover three high-impact

CVEs found by Nyx (CVE-2020-25085, CVE-2020-25084, and CVE-

2021-20257). In total, we analyzed five known bugs, and we mea-

sured the number of executions required to discover these bugs. As

shown in Table 14, V-Shuttle found all of these previously known

bugs within a reasonable number of executions (i.e., from 235 K to

79.4 M) as well as within a reasonable amount of time (i.e., from 40

sec to around 4 hrs).

6 DEPLOYMENT AND APPLICATION OF

V-SHUTTLE

100 101 102 103

time (min)

50

55

60

65

70

%
 B

ra
nc

he
s F

ou
nd

V-SHUTTLE-M
V-SHUTTLE-S

(a) UHCI

100 101 102 103

time (min)

55

60

65

70

%
 B

ra
nc

he
s F

ou
nd

V-SHUTTLE-M
V-SHUTTLE-S

(b) EHCI

Figure 8: Ant Group-QEMU’s branch coverage results found by V-

Shuttle during a 24-hours run. The line indicates averages while the

shaded area represents the 95% confidence intervals across 10 runs.

Now there are many open-source hypervisor solutions. Many

enterprises customize their cloud services based on open source

hypervisors. This fact introduces additional risk, complexity, and

costs for fuzz testing and bug fixing. Consequently, cloud computing

development presents us strongly with a need to establish a general

hypervisor fuzzing platform. By collaborating with the worldwide

leading Internet company Ant Group, we have an opportunity to

deploy and examine V-Shuttle on its commercial platform.

We choose two USB devices, UHCI and EHCI, which are deployed

in the production environment and perform the experiments to

discover branch coverage. The results are shown in Figure 8. As

expected, V-Shuttle-S achieves higher coverage than V-Shuttle-

M in the early time and converges to almost the same coverage

in the long term. This experiment shows similar performance as

in QEMU as described in Section 5.2. By experimenting with Ant

Group’s QEMU, we also show that our framework can be ported to a

variety of hypervisors with little effort. Specifically, when deploying

V-Shuttle to a new hypervisor, what a professional needs to do

is to perform a static analysis on the target device to collect DMA

objects, integrate the fuzzing agent into the hypervisor by some

simple configurations, instrument and compile the source code.

This process is very lightweight, e.g., it only takes about an hour

for a professional in related fields to implement V-Shuttle into a

new hypervisor. V-Shuttle’s scalability allows it able to be quickly

ported to various hypervisor implementations. The deployment

and application of V-Shuttle on Ant Group’s commercial platform



further demonstrates that V-Shuttle is not just an academic tool

but also a meaningful tool in the real world.

7 RELATEDWORK

Fuzzing Techniques. In the past few years, fuzzing has proven to

be a very successful technique for discovering software vulnera-

bilities [14, 16, 19, 25, 32, 49]. AFL is one of the most well-known

fuzzers [5]. Later, many advanced fuzzers were developed based on

AFL [15, 29, 41]. Some research combined fuzzing with other bug

detection technologies [18, 44, 62]. Other approaches focused on

improving the scheduling algorithms [21, 40] and feedback mecha-

nisms [61]. Recently, hybrid fuzzing methods have been researched

extensively [24, 57, 60, 65, 66]. Additionally, some research focused

on evaluating fuzzers [38, 39]. Manès et al.’s survey [42] provides

an in-depth discussion in fuzzing.

Hypervisor Fuzzing.Most previous research on fuzzing hyper-

visors used blind fuzzing [9, 13, 20, 22, 31, 43]. Later, some security

researchers try to combine the hypervisor fuzzing with coverage

guidance [4, 8, 58]. In academia, VDF [34] is the first hypervisor

fuzzing platform that applies coverage-guided fuzzing to hypervi-

sors, which utilizes AFL toolchain to instrument QEMU source code

to collect the coverage information. However, VDF does not take

device protocol into account and only generates rough seed input,

which limits its performance. Hyper-Cube [50] leverages a custom

OS to provide multi-dimensional fuzzing, which is high-throughput.

However, Hyper-Cube struggles to explore complex devices due

to its black-box design. Nyx [51] proposes to fuzz hypervisors by

using fast snapshots and coverage guidance, which increases the

ability to test interesting behavior. However, its nested virtualiza-

tion design makes it more complex to setup the environment, as

the target hypervisor needs to run inside KVM-PT. Additionally,

Nyx still needs a lot of manual work put into specific generators,

not automatically enough.

Other Fuzzing Techniques. There are some similar fuzzing

tools focusing on device-driver interactions. PeriScope [55] hooks

into the kernel’s page fault handling mechanism to apply coverage-

guided fuzzing on WiFi drivers. Agamotto [56] accelerates the ker-

nel driver fuzzing with virtual machine checkpoints. USBFuzz [47]

uses an emulated device in the VM to fuzz USB drivers. Different

from hypervisor fuzzing, they target at the kernel driver side. Addi-

tionally, more and more researchers adopt fuzzing to a wider set

of targets ranging from kernel [27, 30, 33, 36, 37, 45, 52, 63, 64] to

IoT [23, 26, 67].

8 DISCUSSION

PoC Reconstruction. V-Shuttle requires some human resources

to help reconstruct PoC. Because our core fuzzing engine is inte-

grated into the hypervisor’s host process instead of running in the

guest system, we need to recover the PoC from the seed sequences.

If the hypervisor crashes when fuzzing the target device, we will

restart fuzzing another instrumented hypervisor which enables

recording all the MMIO/PIO and DMA access logs. Given the crash

backtrace and all access logs, then we construct the PoC driver

manually. We intend to find a more automatic way as future work.

Supporting Closed-Source Hypervisors. V-Shuttle re-

quires hypervisor modifications in order to redirect a device’s data

requests to the guest system via the MMIO/PIO and DMA inter-

face. A few components of V-Shuttle are deployed before the

compilation phase. Meanwhile, we use AFL’s compile-time instru-

mentation to obtain the coverage information. For this reason, for

now, V-Shuttle does not support closed-source hypervisors such

as VMware Workstation. We believe this could be overcome by

adopting a sort of binary patching and dynamic binary instrumen-

tation techniques with extra effort in the future.

Hypervisor Internal States. Due to the heavy costs involved

in hypervisor restarts, V-Shuttle continuously fuzzes the hypervi-

sor without restarting it between fuzzing iterations. This can limit

the effectiveness of fuzzing because the internal states of the tar-

get system persist across iterations. Changing the target device’s

internal states can also lead to instability in the coverage guidance,

as the same input can exercise different code paths depending on

the hypervisor state. Worse, when changes to the persisting states

accumulate, the device may eventually lock itself up.

9 CONCLUSION

The virtual device represents an attack surface, through which soft-

ware vulnerabilities in the hypervisor can be exploited. However, ex-

isting hypervisor fuzzers are inefficient (e.g., VDF), and meanwhile

not scalable or automatically extendable (e.g., Nyx). To address the

limitations of existing hypervisor fuzzing techniques, in this paper,

we propose V-Shuttle, a scalable and semantics-aware framework

to fuzz virtual devices in hypervisors. V-Shuttle is portable to

fuzz devices on different hypervisors, leveraging coverage-guided

fuzzing. Furthermore, V-Shuttle can effectively enable a broad

fuzzing, which can target a wide range of devices. To examine the

performance of V-Shuttle, we apply it on QEMU and VirtualBox,

two of the most popular hypervisor platforms. Via extensive evalua-

tion, we show V-Shuttle is very effective and efficient. It discovers

26 new memory bugs in QEMU and 9 new bugs in VirtualBox, with

17 bugs received official CVEs. Furthermore, by collaborating with

a worldwide leading Internet company, we also deploy V-Shuttle

on its commercial platform. The results again demonstrate the supe-

riority of V-Shuttle. To facilitate future related research, we will

open source V-Shuttle at https://github.com/hustdebug/v-shuttle.
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10 APPENDIX

Algorithm 1Main semantics-aware fuzzing loop of V-Shuttle

Input: Initial seeds queues Seedpool[], Target Hypervisor H
1: // setup each basic seed queues and global information ;

2: for all queue of the Seedpool[] do
3: queue.setup();
4: end for

5: GlobalMap.init();
6: repeat

7: id = H.request()
8: seed = Mutate(Seedpool[id]);
9: Cover = H.feed(seed);
10: if Cover.haveNewCoverage() then
11: Seedpool[id].push(seed)
12: end if

13: until timeout or abort-signal;
Output: Crashing seeds crashes

http://www.peachfuzzer.com/


1.  void uhci_process_frame ( … ) {
2.      UHCI_QH qh;
3.      …
4.      if (is_qh) {
5.          pci_dma_read (&qh, sizeof(qh));
6.      }

7.      UHCI_TD td;
8.      …
9.      uhci_read_td (&td);

10.     uhci_handle_td (…);
11.     …
12. }

1.  void uhci_read_td (UHCI_TD *td) {
2.      pci_dma_read (td, sizeof(*td));
3.      …
4.  }

1.  void uhci_handle_td ( … ) {
2.      UHCI_TD last_td;
3.      …
4.      uhci_read_td (&last_td);
5.      …
6.  }

1

2

3

Seed Pool

…

Control-Flow

Backward Data-Flow

last_td1
last_td2
…

td1
td2
…

qh1
qh2
…
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Fuzzer

Seedpool-Based Fuzzing

Figure 9: An example presenting the semantics-aware fuzzing via seedpools. Here qh, td, last_td refer to three different DMA objects, respectively (td and
last_td are the same type of data structure, but in different contexts. We still treat them as different DMA objects.). Each of them will be organized into an

independent seed queue.



Table 6: List of 35 previously unknown vulnerabilities in QEMU and VirtualBox discovered by V-Shuttle. The remaining issues marked as requested are

still under investigation. Issue-ID indicates the assertion failures we reported through launchpad.net.

Hypervisor Description Device Type CVE/Issue-ID CVSS Score Impact

QEMU

Heap buffer overflow (write) in ohci_copy_iso_td USB CVE-2020-25624 5.0 DoS

Stack buffer overflow (read) in ohci_service_iso_td USB confirmed - DoS

Heap buffer overflow (read) in ohci_service_td USB confirmed - DoS

Infinite loop in e1000e_write_packet_to_guest Network CVE-2020-25707 2.5 DoS

OOB access in ati_2d_blt Graphics CVE-2020-27616 2.8 DoS

Reachable assert failure via eth_get_gso_type Network CVE-2020-27617 3.8 DoS

Divide by zero in dwc2_handle_packet USB CVE-2020-27661 3.8 DoS

Integer Overflow in sm501_2d_operation Graphics requested - DoS

Infinite loop in xhci_ring_chain_length USB CVE-2020-14394 3.2 DoS

Heap-use-after-free in nic_reset Network requested - Exploitable

Heap buffer overflow (write) in dp8393x_do_transmit_packets Network confirmed - DoS

Failed malloc in omap_rfbi_transfer_start Graphics requested - DoS

Infinite loop in allwinner_sun8i_emac_get_desc Network confirmed - DoS

Divide by zero in exynos4210_ltick_cnt_get_cnto Timer confirmed - DoS

Divide by zero in zynq_slcr_compute_pll Misc confirmed - DoS

Failed malloc in vmxnet3_activate_device Network CVE-2021-20203 3.2 DoS

NULL pointer derefence in fdctrl_read Storage CVE-2021-20196 3.2 DoS

Heap-use-after-free in ehci_flush_qh USB requested - Exploitable

NULL pointer derefence in lsi53c895a Storage requested - DoS

NULL pointer derefence in vmport_ioport_read Core requested - DoS

NULL pointer derefence in a9_gtimer_get_current_cpu Timer requested - DoS

Assertion in usb_msd_send_status USB #1901981 - DoS

Assertion in usb_ep_get USB #1907042 - DoS

Assertion in ohci_frame_boundary USB #1917216 - DoS

Assertion in vmxnet3_io_bar1_write Network #1913923 - DoS

Assertion in lsi_do_dma Storage #1905521 - DoS

VirtualBox

Heap buffer overflow (write) in xhciR3WriteEvent USB CVE-2020-2905 8.2 Exploitable

Heap buffer overflow (write) in xhciR3WriteEvent USB CVE-2020-14872 8.2 Exploitable

OOB Read in ehciR3ServiceQHD USB CVE-2020-14889 6.0 Info leak

Divide by zero in e1kTxDLoadMore Network CVE-2020-14892 5.5 DoS

Integer overflow in e1kGetTxLen Network CVE-2021-2073 4.4 DoS

Heap buffer overflow (write) in buslogicRegisterWrite Storage CVE-2021-2074 8.2 Exploitable

Divide by zero in ataR3SetSector Storage CVE-2021-2086 6.0 DoS

NULL pointer derefence in blk_read Storage CVE-2021-2130 4.4 DoS

Unintialized stack object in LsiLogicSCSI Storage CVE-2021-2123 3.2 Info leak
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