Star 0

Abstract

The global telephone network is relied upon by billions every day. Central to its operation is the Signaling System 7 (SS7) protocol, which is used for setting up calls, managing mobility, and facilitating many other network services. This protocol was originally built on the assumption that only a small number of trusted parties would be able to directly communicate with its core infrastructure. As a result, SS7 --- as a feature --- allows all parties with core access to redirect and intercept calls for any subscriber anywhere in the world. Unfortunately, increased interconnectivity with the SS7 network has led to a growing number of illicit call redirection attacks. We address such attacks with Sonar, a system that detects the presence of SS7 redirection attacks by securely measuring call audio round-trip times between telephony devices. This approach works because redirection attacks force calls to travel longer physical distances than usual, thereby creating longer end-to-end delay. We design and implement a distance bounding-inspired protocol that allows us to securely characterize the round-trip time between the two endpoints. We then use custom hardware deployed in 10 locations across the United States and a redirection testbed to characterize how distance affects round trip time in phone networks. We develop a model using this testbed and show Sonar is able to detect 70.9% of redirected calls between call endpoints of varying attacker proximity (300--7100 miles) with low false positive rates (0.3%). Finally, we ethically perform actual SS7 redirection attacks on our own devices with the help of an industry partner to demonstrate that Sonar detects 100% of such redirections in a real network (with no false positives). As such, we demonstrate that telephone users can reliably detect SS7 redirection attacks and protect the integrity of their calls.

Slides