Star 0

Abstract

We consider oblivious storage systems hiding both the contents of the data as well as access patterns from an untrusted cloud provider. We target a scenario where multiple users from a trusted group (e.g., corporate employees) asynchronously access and edit potentially overlapping data sets through a trusted proxy mediating client-cloud communication. The main contribution of our paper is twofold. Foremost, we initiate the first formal study of asynchronicity in oblivious storage systems. We provide security definitions for scenarios where both client requests and network communication are asynchronous (and in fact, even adversarially scheduled). While security issues in ObliviStore (Stefanov and Shi, S&P 2013) have recently been surfaced, our treatment shows that also CURIOUS (Bindschaedler at al., CCS 2015), proposed with the exact goal of preventing these attacks, is insecure under asynchronous scheduling of network communication. Second, we develop and evaluate a new oblivious storage system, called Tree-based Asynchronous Oblivious Store, or TaoStore for short, which we prove secure in asynchronous environments. TaoStore is built on top of a new tree-based ORAM scheme that processes client requests concurrently and asynchronously in a non-blocking fashion. This results in a substantial gain in throughput, simplicity, and flexibility over previous systems.

Slides